Skip to main content

Universal Systems of Oblivious Mobile Robots

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9988))

Abstract

An oblivious mobile robot is a stateless computational entity located in a spatial universe, capable of moving in that universe. When activated, the robot observes the universe and the location of the other robots, chooses a destination, and moves there. The computation of the destination is made by executing an algorithm, the same for all robots, whose sole input is the current observation. No memory of all these actions is retained after the move. When the spatial universe is a graph, distributed computations by oblivious mobile robots have been intensively studied focusing on the conditions for feasibility of basic problems (e.g., gathering, exploration) in specific classes of graphs under different schedulers. In this paper, we embark on a different, more general, type of investigation.

With their movements from vertices to neighboring vertices, the robots make the system transition from one configuration to another. Thus the execution of an algorithm from a given configuration defines in a natural way the computation of a discrete function by the system. Our research interest is to understand which functions are computed by which systems. In this paper we focus on identifying sets of systems that are universal, in the sense that they can collectively compute all finite functions. We are able to identify several such classes of fully synchronous systems. In particular, among other results, we prove the universality of the set of all graphs with at least one robot, of any set of graphs with at least two robots whose quotient graphs contain arbitrarily long paths, and of any set of graphs with at least three robots and arbitrarily large finite girths. We then focus on the minimum size that a network must have for the robots to be able to compute all functions on a given finite set. We are able to approximate the minimum size of such a network up to a factor that tends to 2 as n goes to infinity.

The main technique we use in our investigation is the simulation between algorithms, which in turn defines domination between systems. If a system dominates another system, then it can compute at least as many functions. The other ingredient is constituted by path and ring networks, of which we give a thorough analysis. Indeed, in terms of implicit function computations, they are revealed to be fundamental topologies with important properties. Understanding these properties enables us to extend our results to larger classes of graphs, via simulation.

This work has been supported in part by the Natural Sciences and Engineering Research Council of Canada through the Discovery Grant program; by Prof. Flocchini’s University Research Chair; and by the Scientific Grant in Aid by the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Blin, L., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Exclusive perpetual ring exploration without chirality. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 312–327. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15763-9_29

    Chapter  Google Scholar 

  2. Bonnet, F., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Asynchronous exclusive perpetual grid exploration without sense of direction. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 251–265. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25873-2_18

    Chapter  Google Scholar 

  3. Chalopin, J., Flocchini, P., Mans, B., Santoro, N.: Network exploration by silent and oblivious robots. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 208–219. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16926-7_20

    Chapter  Google Scholar 

  4. D’Angelo, G., Di Stefano, G., Klasing, R., Navarra, A.: Gathering of robots on anonymous grids without multiplicity detection. Theoret. Comput. Sci. 610, 158–168 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. D’Angelo, G., Di Stefano, G., Navarra, A.: Gathering six oblivious robots on anonymous symmetric rings. J. Discrete Algorithms 26, 16–27 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. D’Angelo, G., Di Stefano, G., Navarra, A.: Gathering on rings under the look-compute-move model. Distrib. Comput. 27(4), 255–285 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. D’Angelo, G., Di Stefano, G., Navarra, A., Nisse, N., Suchan, K.: Computing on rings by oblivious robots: a unified approach for different tasks. Algorithmica 72(4), 1055–1096 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Devismes, S., Lamani, A., Petit, F., Tixeuil, S.: Optimal torus exploration by oblivious mobile robots. Inria Technical Report HAL-00926573 (2014)

    Google Scholar 

  9. Devismes, S., Petit, F., Tixeuil, S.: Optimal probabilistic ring exploration by semi-synchronous oblivious robots. Theoret. Comput. Sci. 498, 10–27 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Elor, Y., Bruckstein, A.M.: Uniform multi-agent deployment on a ring. Theoret. Comput. Sci. 412, 783–795 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Remembering without memory: tree exploration by asynchronous oblivious robots. Theoret. Comput. Sci. 411(14–15), 1583–1598 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: How many oblivious robots can explore a line. Inf. Process. Lett. 111(20), 1027–1031 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Ring exploration by asynchronous oblivious robots. Algorithmica 65(3), 562–583 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots. Morgan & Claypool, San Rafeal (2012)

    MATH  Google Scholar 

  15. Flocchini, P., Santoro, N., Viglietta, G., Yamashita, M.: Universal systems of oblivious mobile robots [cs.DC]. arXiv:1602.04881 (2016)

  16. Gilbert, E., Riordan, J.: Symmetry types of periodic sequences. Ill. J. Math. 5(4), 657–665 (1961)

    MathSciNet  MATH  Google Scholar 

  17. Guilbault, S., Pelc, A.: Gathering asynchronous oblivious agents with local vision in regular bipartite graphs. Theoret. Comput. Sci. 509, 86–96 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Mobile robots gathering algorithm with local weak multiplicity in rings. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 101–113. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13284-1_9

    Chapter  Google Scholar 

  19. Johnson, S.: Generation of permutations by adjacent transposition. Math. Comput. 17, 282–285 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Gathering an even number of robots in an odd ring without global multiplicity detection. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 542–553. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32589-2_48

    Chapter  Google Scholar 

  21. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1), 4–32 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: gathering of many asynchronous oblivious robots on a ring. Theoret. Comput. Sci. 411, 3235–3246 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. Theoret. Comput. Sci. 390, 27–39 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kosowski, A., Navarra, A.: Graph decomposition for improving memoryless periodic exploration. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 501–512. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03816-7_43

    Chapter  Google Scholar 

  25. Lamani, A., Potop-Butucaru, M.G., Tixeuil, S.: Optimal deterministic ring exploration with oblivious asynchronous robots. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 183–196. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13284-1_15

    Chapter  Google Scholar 

  26. Millet, L., Potop-Butucaru, M., Sznajder, N., Tixeuil, S.: On the synthesis of mobile robots algorithms: the case of ring gathering. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 237–251. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11764-5_17

    Google Scholar 

  27. Ooshita, F., Tixeuil, S.: On the self-stabilization of mobile oblivious robots in uniform rings. Theoret. Comput. Sci. 568, 84–96 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Viglietta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Flocchini, P., Santoro, N., Viglietta, G., Yamashita, M. (2016). Universal Systems of Oblivious Mobile Robots. In: Suomela, J. (eds) Structural Information and Communication Complexity. SIROCCO 2016. Lecture Notes in Computer Science(), vol 9988. Springer, Cham. https://doi.org/10.1007/978-3-319-48314-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48314-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48313-9

  • Online ISBN: 978-3-319-48314-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics