Skip to main content

ForestSim: An Agent-Based Simulation for Bioenergy Sustainability Assessment

  • Chapter
  • First Online:
Book cover Advances in Complex Societal, Environmental and Engineered Systems

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 18))

Abstract

Global development must become more sustainable. To do so, society must adopt a sustainable energy alternative to fossil fuels (Dincer 2000). Second-generation bioenergy from woody biomass (trees and other woody plants) offers a promising alternative that can avoid both the inevitable finite supply problems and climate change impacts of conventional energy (Hoogwijk et al. 2003). However, the sustainability of second-generation bioenergy depends greatly on the availability of a reliable woody biomass supply (Becker et al. 2009). The provisioning of biomass feedstock requires significant land-use land-cover change in the form of forest harvesting activity that greatly impacts local forest ecology, the viability of bioenergy markets, and other socially valued forest uses. These overlapping and often competing interests make estimating the availability of biomass and assessing its sustainability impacts a highly complex task (Berndes et al. 2003). The current chapter provides a framework for using Agent-Based Modeling (ABM) to assess the sustainability of bioenergy production in a way that accounts for this inherent complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfaro, J., Sharp, B., & Miller, S. (2010). Developing LCA techniques for emerging systems: Game theory, agent modeling as prediction tools. Symposium on in Sustainable Systems and Technology (ISSST), 2010 IEEE International, Chicago.

    Google Scholar 

  • An, L. (2012). Modeling human decisions in coupled human and natural systems: Review of agent-based models. Ecological Modelling, 229, 25–36.

    Article  Google Scholar 

  • Ayres, R. U. (1995). Life-cycle analysis: A critique. Life Cycle Management, 14, 199–223.

    Google Scholar 

  • Becker, D. R., Moseley, C., & Lee, C. (2011). A supply chain analysis framework for assessing state-level forest biomass utilization policies in the United States. Biomass and Bioenergy, 35, 1429–1439.

    Article  Google Scholar 

  • Becker, D. R., Skog, K., Hellman, A., Halvorsen, K. E., & Mace, T. (2009). An outlook for sustainable forest bioenergy production in the Lake States. Energy Policy, 37, 5687–5693.

    Article  Google Scholar 

  • Berndes, G., Hoogwijk, M., & van den Broek, R. (2003). The contribution of biomass in the future global energy supply: A review of 17 studies. Biomass and Bioenergy, 25, 1–28.

    Article  Google Scholar 

  • Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human systems. PNAS, 99(3), 7280–7287.

    Article  Google Scholar 

  • Brown, C., Bakkam, I., Smith, P., & Matthews, R. (2016). An agent-based modeling approach to evaluate factors influencing bioenergy crop adoption in north-east Scotland. Global Change Biology Bioenergy, 8, 226–244.

    Article  Google Scholar 

  • Charles, M. B., Ryan, R., Ryan, N., & Oloruntoba, R. (2007). Public policy and biofuels: The way forward? Energy Policy, 35, 5737–5746.

    Article  Google Scholar 

  • D’Amours, S., Ronnqvist, M., & Weintraub, A. (2008). Using operational research for supply chain planning in the forest products industry. INFOR, 46(4), 265–281.

    Google Scholar 

  • Davis, C., Nikolic, I., & Dijkema, J. P. G. (2008). Integrating life-cycle analysis with agent-based modeling: Deciding on bio-electricity. First International Conference on Infrastructure Systems and Services: Building Networks for a Brighter Future (INFRA), pp. 1–6.

    Google Scholar 

  • Dincer, I. (2000). Renewable energy and sustainable development: A crucial review. Renewable and Sustainable Energy Reviews, 4, 157–175.

    Article  Google Scholar 

  • Fargione, J., Hill, J., Tilman, D., Polasky, S., & Hawthorne, P. (2008). Land clearing and the biofuel carbon debt. Science, 319(5867), 1235–1238.

    Article  Google Scholar 

  • Finnveden, G. (2000). On the limitations of life cycle assessment and environmental systems analysis tools in general. The International Journal of Life Cycle Assessment, 5(4), 229–238.

    Article  Google Scholar 

  • Gan, J., Langeveld, J. W. A., & Smith, C. T. (2014). An agent-based modeling approach for determining corn stover removal rate and transboundary effects. Environmental Management, 53, 333–342.

    Article  Google Scholar 

  • Giddings, B., Hopwood, B., & O’Brien, G. (2002). Environment, economy, and society: Fitting them together into sustainable development. Sustainable Development, 10, 187–196.

    Article  Google Scholar 

  • Hacking, T., & Guthrie, P. (2008). A framework for clarifying the meaning of Triple Bottom-Line, Integrated, and Sustainability Assessment. Environmental Impact Assessment Review, 28(2–3), 73–89.

    Article  Google Scholar 

  • Hoogwijk, M., Faaij, A., Van der Broek, R., Berndes, G., Gielen, D., & Turkenburg, W. (2003). Exploration of the ranges of the global potential of biomass for energy. Biomass and Bioenergy, 25, 119–133.

    Article  Google Scholar 

  • Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., & Rosenbaum, R. (2003). Impact 2002+: A new life cycle impact assessment methodology. The International Journal of Life Cycle Assessment, 8(6), 324–330.

    Article  Google Scholar 

  • Lind-Riehl, J., Jeltema, S., Morrison, M., Shirkey, G., Mayer, A. L., Rouleau, M., & Winkler, R. (2015). Family legacies and community networks shape private forest management in the western Upper Peninsula of Michigan (USA). Land Use Policy, 45, 95–102.

    Article  Google Scholar 

  • Liu, J., Dietz, T., Carpenter, S. R., Folke, C., Alberti, M., Redman, C. L., Schneider, S. H., Ostrom, E., Pell, A. N., Lubchenco, J., Taylor, W. W., Ouyang, Z., Deadman, P., Kratz, T., & Provencher, W. (2007). Coupled human and natural systems. AMBIO: A Journal of the Human Environment, 36(8), 639–649.

    Article  Google Scholar 

  • Ma, Z., Becker, D. R., & Kilgore, M. A. (2009). Assessing cumulative impacts within state environmental review frameworks in the United States. Environmental Impact Assessment Review, 29, 390–398.

    Article  Google Scholar 

  • Matthews, R., & Dyer, G. (2011). Evaluating the impacts of REDD+ at subnational scales: Are our frameworks and models good enough? Carbon Management, 2(5), 517–527.

    Article  Google Scholar 

  • Matthews, R. B., Gilbert, N. G., Roach, J., Pohill, J. G., & Gotts, N. M. (2007). Agent-based land-use models: A review of applications. Landscape Ecology, 22, 1447–1459.

    Article  Google Scholar 

  • Mayer, A. L., & Rouleau, M. D. (2013). ForestSim model of impacts of smallholder dynamics: Forested landscapes of the Upper Peninsula of Michigan. International Journal of Forestry Research. vol. 2013, Article ID 520207, 2013, 13p. doi:10.1155/2013/520207

    Google Scholar 

  • Miller, J. H., & Page, S. E. (2007). Complex adaptive systems: An introduction to computational models of social life. Princeton, NJ: Princeton University Press.

    MATH  Google Scholar 

  • Mohr, A., & Raman, S. (2013). Lessons from first-generation biofuels and the implications for sustainability appraisal of second generation biofuels. Energy Policy, 63, 114–122.

    Article  Google Scholar 

  • Pope, J., Annendale, D., & Morrison-Saunders, A. (2004). Conceptualizing sustainability assessment. Environmental Impact Assessment Review, 24, 595–616.

    Article  Google Scholar 

  • Regalbuto, J. (2009). Cellulosic biofuels—got gasoline? Science, 325(5942), 822–824.

    Article  Google Scholar 

  • Schubert, J. R., & Mayer, A. L. (2012). Peer influence of nonindustrial private forest owners in the Western Upper Peninsula of Michigan. Open Journal of Forestry, 2(3), 147–155.

    Article  Google Scholar 

  • St Clair, S., Hillier, J., & Smith, P. (2008). Estimating pre-harvest greenhouse costs of energy crop production. Biomass and Bioenergy, 32, 442–452.

    Article  Google Scholar 

  • Tillman, A. (2000). Significance of decision-making for LCA methodology. Environmental Impact Assessment Review, 20(1), 113–123.

    Article  Google Scholar 

  • Vaidya, A., & Mayer, A. L. (2016). Criteria and indicators for a bioenergy production industry identified via stakeholder participation. International Journal of Sustainability and World Ecology, 23(6), 526–540.

    Google Scholar 

  • Wolde, B., Lal, P., Alavalapati, J., Burli, P., & Munsell, J. (2016). Factors affecting forestland owners’ allocation of non-forested land to pine plantation for bioenergy in Virginia. Biomass and Bioenergy, 85, 69–75.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Rouleau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rouleau, M. (2017). ForestSim: An Agent-Based Simulation for Bioenergy Sustainability Assessment. In: Nemiche, M., Essaaidi, M. (eds) Advances in Complex Societal, Environmental and Engineered Systems. Nonlinear Systems and Complexity, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-46164-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46164-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46163-2

  • Online ISBN: 978-3-319-46164-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics