Skip to main content

Modulation of Neurotransmission by the GABAB Receptor

  • Chapter
  • First Online:
Book cover GABAB Receptor

Part of the book series: The Receptors ((REC,volume 29))

Abstract

Most inhibitory signals are mediated via γ-aminobutyric acid (GABA) receptors whereas glutamate receptors mediate most excitatory signals (Trends Neurosci 14:515–519, 1991; Annu Rev Neurosci 17:31–108, 1994). Many factors influence the regulation of excitatory and inhibitory synaptic inputs on a given neuron. One important factor is the subtype of neurotransmitter receptor present not only at the correct location to receive the appropriate signals but also their abundance at synapses (Pharmacol Rev 51: 7–61, 1999; Cold Spring Harb Perspect Biol 3, 2011). GABAB receptors are G-protein-coupled receptors and different subunits dimerise to form a functional receptor. GABAB receptor subunits are widely expressed in the brain and by assembling different isoform combinations and accessory proteins they produce variety of physiological and pharmacological profiles in mediating both inhibitory and excitatory neurotransmission. This chapter will describe the understanding of the molecular mechanisms underlying GABAB receptor regulation of glutamate and GABAA receptors and how they modulate excitatory and inhibitory neurotransmission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amaral, D. G., Scharfman, H. E., & Lavenex, P. (2007). The dentate gyrus: Fundamental neuroanatomical organization (dentate gyrus for dummies). Progress in Brain Research, 163, 3–22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartoi, T., Rigbolt, K. T., Du, D., Kohr, G., Blagoev, B., & Kornau, H. C. (2010). GABAB receptor constituents revealed by tandem affinity purification from transgenic mice. Journal of Biological Chemistry, 285, 20625–20633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann, S. W., Baur, R., & Sigel, E. (2001). Subunit arrangement of gamma-aminobutyric acid type A receptors. Journal of Biological Chemistry, 276, 36275–36280.

    Article  CAS  PubMed  Google Scholar 

  • Bayer, K. U., De Koninck, P., Leonard, A. S., Hell, J. W., & Schulman, H. (2001). Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature, 411, 801–805.

    Article  CAS  PubMed  Google Scholar 

  • Bettler, B., & Tiao, J. Y. (2006). Molecular diversity, trafficking and subcellular localization of GABAB receptors. Pharmacology & Therapeutics, 110, 533–543.

    Article  CAS  Google Scholar 

  • Biermann, B., Ivankova-Susankova, K., Bradaia, A., Abdel Aziz, S., Besseyrias, V., Kapfhammer, J. P., et al. (2010). The Sushi domains of GABAB receptors function as axonal targeting signals. Journal of Neuroscience, 30, 1385–1394.

    Article  CAS  PubMed  Google Scholar 

  • Bischoff, S., Leonhard, S., Reymann, N., Schuler, V., Shigemoto, R., Kaupmann, K., et al. (1999). Spatial distribution of GABA(B)R1 receptor mRNA and binding sites in the rat brain. Journal of Comparative Neurology, 412, 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Bliss, T. V., & Collingridge, G. L. (1993). A synaptic model of memory: Long-term potentiation in the hippocampus. Nature, 361, 31–39.

    Article  CAS  PubMed  Google Scholar 

  • Bowery, N. G., Hill, D. R., Hudson, A. L., Doble, A., Middlemiss, D. N., Shaw, J., et al. (1980). (-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature, 283, 92–94.

    Article  CAS  PubMed  Google Scholar 

  • Bowery, N. G., & Hudson, A. L. (1979). gamma-Aminobutyric acid reduces the evoked release of [3H]-noradrenaline from sympathetic nerve terminals [proceedings]. British Journal of Pharmacology, 66, 108p.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buhl, E. H., Halasy, K., & Somogyi, P. (1994). Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature, 368, 823–828.

    Article  CAS  PubMed  Google Scholar 

  • Burgard, E. C., & Sarvey, J. M. (1991). Long-lasting potentiation and epileptiform activity produced by GABAB receptor activation in the dentate gyrus of rat hippocampal slice. Journal of Neuroscience, 11, 1198–1209.

    CAS  PubMed  Google Scholar 

  • Chalifoux, J. R., & Carter, A. G. (2010). GABAB receptors modulate NMDA receptor calcium signals in dendritic spines. Neuron, 66, 101–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Y., Menendez-Roche, N., & Sher, E. (2006). Differential modulation by the GABAB receptor allosteric potentiator 2,6-di-tert-butyl-4-(3-hydroxy-2,2-dimethylpropyl)-phenol (CGP7930) of synaptic transmission in the rat hippocampal CA1 area. Journal of Pharmacology and Experimental Therapeutics, 317, 1170–1177.

    Article  CAS  PubMed  Google Scholar 

  • Cherubini, E., Gaiarsa, J. L., & Ben-Ari, Y. (1991). GABA: An excitatory transmitter in early postnatal life. Trends in Neurosciences, 14, 515–519.

    Article  CAS  PubMed  Google Scholar 

  • Cobb, S. R., Manuel, N. A., Morton, R. A., Gill, C. H., Collingridge, G. L., & Davies, C. H. (1999). Regulation of depolarizing GABA(A) receptor-mediated synaptic potentials by synaptic activation of GABA(B) autoreceptors in the rat hippocampus. Neuropharmacology, 38, 1723–1732.

    Article  CAS  PubMed  Google Scholar 

  • Collado-Hilly, M., & Coquil, J. F. (2009). Ins(1,4,5)P3 receptor type 1 associates with AKAP9 (AKAP450 variant) and protein kinase A type IIbeta in the Golgi apparatus in cerebellar granule cells. Biology of the Cell, 101, 469–480.

    Article  CAS  PubMed  Google Scholar 

  • Colledge, M., Dean, R. A., Scott, G. K., Langeberg, L. K., Huganir, R. L., & Scott, J. D. (2000). Targeting of PKA to glutamate receptors through a MAGUK-AKAP complex. Neuron, 27, 107–119.

    Article  CAS  PubMed  Google Scholar 

  • Conn, P. J., & Pin, J. P. (1997). Pharmacology and functions of metabotropic glutamate receptors. Annual Review of Pharmacology and Toxicology, 37, 205–237.

    Article  CAS  PubMed  Google Scholar 

  • Connelly, W. M., Fyson, S. J., Errington, A. C., McCafferty, C. P., Cope, D. W., Di Giovanni, G., et al. (2013). GABAB receptors regulate extrasynaptic GABAA receptors. Journal of Neuroscience, 33, 3780–3785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cossart, R., Bernard, C., & Ben-Ari, Y. (2005). Multiple facets of GABAergic neurons and synapses: Multiple fates of GABA signalling in epilepsies. Trends in Neurosciences, 28, 108–115.

    Article  CAS  PubMed  Google Scholar 

  • Couve, A., Calver, A. R., Fairfax, B., Moss, S. J., & Pangalos, M. N. (2004). Unravelling the unusual signalling properties of the GABA(B) receptor. Biochemical Pharmacology, 68, 1527–1536.

    Article  CAS  PubMed  Google Scholar 

  • Crunelli, V., & Leresche, N. (1991). A role for GABAB receptors in excitation and inhibition of thalamocortical cells. Trends in Neurosciences, 14, 16–21.

    Article  CAS  PubMed  Google Scholar 

  • Cruz, H. G., Ivanova, T., Lunn, M. L., Stoffel, M., Slesinger, P. A., & Luscher, C. (2004). Bi-directional effects of GABA(B) receptor agonists on the mesolimbic dopamine system. Nature Neuroscience, 7, 153–159.

    Article  CAS  PubMed  Google Scholar 

  • Davies, C. H., & Collingridge, G. L. (1996). Regulation of EPSPs by the synaptic activation of GABAB autoreceptors in rat hippocampus. Journal of Physiology, 496(Pt 2), 451–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies, C. H., Starkey, S. J., Pozza, M. F., & Collingridge, G. L. (1991). GABA autoreceptors regulate the induction of LTP. Nature, 349, 609–611.

    Article  CAS  PubMed  Google Scholar 

  • De La Rue, S. A., & Henley, J. M. (2002). Proteins involved in the trafficking and functional synaptic expression of AMPA and KA receptors. ScientificWorldJournal, 2, 461–482.

    Article  CAS  Google Scholar 

  • Deisz, R. A., Billard, J. M., & Zieglgansberger, W. (1997). Presynaptic and postsynaptic GABAB receptors of neocortical neurons of the rat in vitro: Differences in pharmacology and ionic mechanisms. Synapse, 25, 62–72.

    Article  CAS  PubMed  Google Scholar 

  • Deng, P. Y., Xiao, Z., Yang, C., Rojanathammanee, L., Grisanti, L., Watt, J., et al. (2009). GABA(B) receptor activation inhibits neuronal excitability and spatial learning in the entorhinal cortex by activating TREK-2 K+ channels. Neuron, 63, 230–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dingledine, R., Borges, K., Bowie, D., & Traynelis, S. F. (1999). The glutamate receptor ion channels. Pharmacological Reviews, 51, 7–61.

    CAS  PubMed  Google Scholar 

  • Dittman, J. S., & Regehr, W. G. (1996). Contributions of calcium-dependent and calcium-independent mechanisms to presynaptic inhibition at a cerebellar synapse. Journal of Neuroscience, 16, 1623–1633.

    CAS  PubMed  Google Scholar 

  • Dittman, J. S., & Regehr, W. G. (1997). Mechanism and kinetics of heterosynaptic depression at a cerebellar synapse. Journal of Neuroscience, 17, 9048–9059.

    CAS  PubMed  Google Scholar 

  • Dutar, P., & Nicoll, R. A. (1988). A physiological role for GABAB receptors in the central nervous system. Nature, 332, 156–158.

    Article  CAS  PubMed  Google Scholar 

  • El Gaamouch, F., Buisson, A., Moustie, O., Lemieux, M., Labrecque, S., Bontempi, B., et al. (2012). Interaction between alphaCaMKII and GluN2B controls ERK-dependent plasticity. Journal of Neuroscience, 32, 10767–10779.

    Article  PubMed  CAS  Google Scholar 

  • Fairfax, B. P., Pitcher, J. A., Scott, M. G., Calver, A. R., Pangalos, M. N., Moss, S. J., et al. (2004). Phosphorylation and chronic agonist treatment atypically modulate GABAB receptor cell surface stability. Journal of Biological Chemistry, 279, 12565–12573.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez, F., & Garner, C. C. (2007). Over-inhibition: A model for developmental intellectual disability. Trends in Neurosciences, 30, 497–503.

    Article  CAS  PubMed  Google Scholar 

  • Ferraguti, F., Crepaldi, L., & Nicoletti, F. (2008). Metabotropic glutamate 1 receptor: Current concepts and perspectives. Pharmacological Reviews, 60, 536–581.

    Article  CAS  PubMed  Google Scholar 

  • Ferraguti, F., & Shigemoto, R. (2006). Metabotropic glutamate receptors. Cell and Tissue Research, 326, 483–504.

    Article  CAS  PubMed  Google Scholar 

  • Foster, J. D., Kitchen, I., Bettler, B., & Chen, Y. (2013). GABAB receptor subtypes differentially modulate synaptic inhibition in the dentate gyrus to enhance granule cell output. British Journal of Pharmacology, 168, 1808–1819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freund, T. F., & Buzsaki, G. (1996). Interneurons of the hippocampus. Hippocampus, 6, 347–470.

    Article  CAS  PubMed  Google Scholar 

  • Fritschy, J. M., Meskenaite, V., Weinmann, O., Honer, M., Benke, D., & Mohler, H. (1999). GABAB-receptor splice variants GB1a and GB1b in rat brain: Developmental regulation, cellular distribution and extrasynaptic localization. European Journal of Neuroscience, 11, 761–768.

    Article  CAS  PubMed  Google Scholar 

  • Gahwiler, B. H., & Brown, D. A. (1985). GABAB-receptor-activated K+ current in voltage-clamped CA3 pyramidal cells in hippocampal cultures. Proceedings of the National Academy of Sciences of the United States of America, 82, 1558–1562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerrow, K., & Triller, A. (2014). GABAA receptor subunit composition and competition at synapses are tuned by GABAB receptor activity. Molecular and Cellular Neuroscience, 60, 97–107.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert, A. K., & Franklin, K. B. (2001). GABAergic modulation of descending inhibitory systems from the rostral ventromedial medulla (RVM). Dose-response analysis of nociception and neurological deficits. Pain, 90, 25–36.

    Article  CAS  PubMed  Google Scholar 

  • Gomez, L. L., Alam, S., Smith, K. E., Horne, E., & Dell’acqua, M. L. (2002). Regulation of A-kinase anchoring protein 79/150-cAMP-dependent protein kinase postsynaptic targeting by NMDA receptor activation of calcineurin and remodeling of dendritic actin. Journal of Neuroscience, 22, 7027–7044.

    CAS  PubMed  Google Scholar 

  • Grampp, T., Sauter, K., Markovic, B., & Benke, D. (2007). Gamma-aminobutyric acid type B receptors are constitutively internalized via the clathrin-dependent pathway and targeted to lysosomes for degradation. Journal of Biological Chemistry, 282, 24157–24165.

    Article  CAS  PubMed  Google Scholar 

  • Gray, J. A., & Green, A. R. (1987). GABAB-receptor mediated inhibition of potassium-evoked release of endogenous 5-hydroxytryptamine from mouse frontal cortex. British Journal of Pharmacology, 91, 517–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guetg, N., Abdel Aziz, S., Holbro, N., Turecek, R., Rose, T., Seddik, R., et al. (2010). NMDA receptor-dependent GABAB receptor internalization via CaMKII phosphorylation of serine 867 in GABAB1. Proceedings of the National Academy of Sciences of the United States of America, 107, 13924–13929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahner, L., Mcquilkin, S., & Harris, R. A. (1991). Cerebellar GABAB receptors modulate function of GABAA receptors. FASEB Journal, 5, 2466–2472.

    CAS  PubMed  Google Scholar 

  • Halasy, K., Buhl, E. H., Lorinczi, Z., Tamas, G., & Somogyi, P. (1996). Synaptic target selectivity and input of GABAergic basket and bistratified interneurons in the CA1 area of the rat hippocampus. Hippocampus, 6, 306–329.

    Article  CAS  PubMed  Google Scholar 

  • Hirono, M., Yoshioka, T., & Konishi, S. (2001). GABA(B) receptor activation enhances mGluR-mediated responses at cerebellar excitatory synapses. Nature Neuroscience, 4, 1207–1216.

    Article  CAS  PubMed  Google Scholar 

  • Hollmann, M., & Heinemann, S. (1994). Cloned glutamate receptors. Annual Review of Neuroscience, 17, 31–108.

    Article  CAS  PubMed  Google Scholar 

  • Ichise, T., Kano, M., Hashimoto, K., Yanagihara, D., Nakao, K., Shigemoto, R., et al. (2000). mGluR1 in cerebellar Purkinje cells essential for long-term depression, synapse elimination, and motor coordination. Science, 288, 1832–1835.

    Article  CAS  PubMed  Google Scholar 

  • Ige, A. O., Bolam, J. P., Billinton, A., White, J. H., Marshall, F. H., & Emson, P. C. (2000). Cellular and sub-cellular localisation of GABA(B1) and GABA(B2) receptor proteins in the rat cerebellum. Brain Research. Molecular Brain Research, 83, 72–80.

    Article  CAS  PubMed  Google Scholar 

  • Isaacson, J. S., Solis, J. M., & Nicoll, R. A. (1993). Local and diffuse synaptic actions of GABA in the hippocampus. Neuron, 10, 165–175.

    Article  CAS  PubMed  Google Scholar 

  • Ito, M. (2001). Cerebellar long-term depression: Characterization, signal transduction, and functional roles. Physiological Reviews, 81, 1143–1195.

    CAS  PubMed  Google Scholar 

  • Jacobson, L. H., Kelly, P. H., Bettler, B., Kaupmann, K., & Cryan, J. F. (2007). Specific roles of GABA(B(1)) receptor isoforms in cognition. Behavioural Brain Research, 181, 158–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juhasz, G., Emri, Z., Kekesi, K. A., Salfay, O., & Crunelli, V. (1994). Blockade of thalamic GABAB receptors decreases EEG synchronization. Neuroscience Letters, 172, 155–158.

    Article  CAS  PubMed  Google Scholar 

  • Jurado, S., Biou, V., & Malenka, R. C. (2010). A calcineurin/AKAP complex is required for NMDA receptor-dependent long-term depression. Nature Neuroscience, 13, 1053–1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamikubo, Y., Tabata, T., Kakizawa, S., Kawakami, D., Watanabe, M., Ogura, A., et al. (2007). Postsynaptic GABAB receptor signalling enhances LTD in mouse cerebellar Purkinje cells. Journal of Physiology, 585, 549–563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantamneni, S., Correa, S. A., Hodgkinson, G. K., Meyer, G., Vinh, N. N., Henley, J. M., et al. (2007). GISP: A novel brain-specific protein that promotes surface expression and function of GABA(B) receptors. Journal of Neurochemistry, 100, 1003–1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantamneni, S., Gonzalez-Gonzalez, I. M., Luo, J., Cimarosti, H., Jacobs, S. C., Jaafari, N., et al. (2014). Differential regulation of GABAB receptor trafficking by different modes of N-methyl-D-aspartate (NMDA) receptor signaling. Journal of Biological Chemistry, 289, 6681–6694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkitadze, M. D., & Barlow, P. N. (2001). Structure and flexibility of the multiple domain proteins that regulate complement activation. Immunology Reviews, 180, 146–161.

    Article  CAS  Google Scholar 

  • Kobayashi, M., Takei, H., Yamamoto, K., Hatanaka, H., & Koshikawa, N. (2012). Kinetics of GABAB autoreceptor-mediated suppression of GABA release in rat insular cortex. Journal of Neurophysiology, 107, 1431–1442.

    Article  CAS  PubMed  Google Scholar 

  • Kulik, A., Vida, I., Lujan, R., Haas, C. A., Lopez-Bendito, G., Shigemoto, R., et al. (2003). Subcellular localization of metabotropic GABA(B) receptor subunits GABA(B1a/b) and GABA(B2) in the rat hippocampus. Journal of Neuroscience, 23, 11026–11035.

    CAS  PubMed  Google Scholar 

  • Kuramoto, N., Wilkins, M. E., Fairfax, B. P., Revilla-Sanchez, R., Terunuma, M., Tamaki, K., et al. (2007). Phospho-dependent functional modulation of GABA(B) receptors by the metabolic sensor AMP-dependent protein kinase. Neuron, 53, 233–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ladera, C., Godino Mdel, C., Martin, R., Lujan, R., Shigemoto, R., Ciruela, F., et al. (2007). The coexistence of multiple receptors in a single nerve terminal provides evidence for pre-synaptic integration. Journal of Neurochemistry, 103, 2314–2326.

    Article  CAS  PubMed  Google Scholar 

  • Lambert, N. A., & Wilson, W. A. (1993). Heterogeneity in presynaptic regulation of GABA release from hippocampal inhibitory neurons. Neuron, 11, 1057–1067.

    Article  CAS  PubMed  Google Scholar 

  • Leutgeb, J. K., Leutgeb, S., Moser, M. B., & Moser, E. I. (2007). Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science, 315, 961–966.

    Article  CAS  PubMed  Google Scholar 

  • Lin, J. W., Wyszynski, M., Madhavan, R., Sealock, R., Kim, J. U., & Sheng, M. (1998). Yotiao, a novel protein of neuromuscular junction and brain that interacts with specific splice variants of NMDA receptor subunit NR1. Journal of Neuroscience, 18, 2017–2027.

    CAS  PubMed  Google Scholar 

  • Lodge, D. (2009). The history of the pharmacology and cloning of ionotropic glutamate receptors and the development of idiosyncratic nomenclature. Neuropharmacology, 56, 6–21.

    Article  CAS  PubMed  Google Scholar 

  • Lujan, R., Roberts, J. D., Shigemoto, R., Ohishi, H., & Somogyi, P. (1997). Differential plasma membrane distribution of metabotropic glutamate receptors mGluR1 alpha, mGluR2 and mGluR5, relative to neurotransmitter release sites. Journal of Chemical Neuroanatomy, 13, 219–241.

    Article  CAS  PubMed  Google Scholar 

  • Lujan, R., & Shigemoto, R. (2006). Localization of metabotropic GABA receptor subunits GABAB1 and GABAB2 relative to synaptic sites in the rat developing cerebellum. European Journal of Neuroscience, 23, 1479–1490.

    Article  CAS  PubMed  Google Scholar 

  • Luscher, C., Jan, L. Y., Stoffel, M., Malenka, R. C., & Nicoll, R. A. (1997). G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron, 19, 687–695.

    Article  CAS  PubMed  Google Scholar 

  • Maier, P. J., Marin, I., Grampp, T., Sommer, A., & Benke, D. (2010). Sustained glutamate receptor activation down-regulates GABAB receptors by shifting the balance from recycling to lysosomal degradation. Journal of Biological Chemistry, 285, 35606–35614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mainen, Z. F., Malinow, R., & Svoboda, K. (1999). Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated. Nature, 399, 151–155.

    Article  CAS  PubMed  Google Scholar 

  • Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: An embarrassment of riches. Neuron, 44, 5–21.

    Article  CAS  PubMed  Google Scholar 

  • Malitschek, B., Schweizer, C., Keir, M., Heid, J., Froestl, W., Mosbacher, J., et al. (1999). The N-terminal domain of gamma-aminobutyric Acid(B) receptors is sufficient to specify agonist and antagonist binding. Molecular Pharmacology, 56, 448–454.

    CAS  PubMed  Google Scholar 

  • Margeta-Mitrovic, M., Mitrovic, I., Riley, R. C., Jan, L. Y., & Basbaum, A. I. (1999). Immunohistochemical localization of GABA(B) receptors in the rat central nervous system. Journal of Comparative Neurology, 405, 299–321.

    Article  CAS  PubMed  Google Scholar 

  • Marshall, F. H., Jones, K. A., Kaupmann, K., & Bettler, B. (1999). GABAB receptors—The first 7TM heterodimers. Trends in Pharmacological Sciences, 20, 396–399.

    Article  CAS  PubMed  Google Scholar 

  • Mateos, J. M., Benitez, R., Elezgarai, I., Azkue, J. J., Lazaro, E., Osorio, A., et al. (2000). Immunolocalization of the mGluR1b splice variant of the metabotropic glutamate receptor 1 at parallel fiber-Purkinje cell synapses in the rat cerebellar cortex. Journal of Neurochemistry, 74, 1301–1309.

    Article  CAS  PubMed  Google Scholar 

  • Metz, M., Gassmann, M., Fakler, B., Schaeren-Wiemers, N., & Bettler, B. (2011). Distribution of the auxiliary GABAB receptor subunits KCTD8, 12, 12b, and 16 in the mouse brain. Journal of Comparative Neurology, 519, 1435–1454.

    Article  CAS  PubMed  Google Scholar 

  • Miles, R., Toth, K., Gulyas, A. I., Hajos, N., & Freund, T. F. (1996). Differences between somatic and dendritic inhibition in the hippocampus. Neuron, 16, 815–823.

    Article  CAS  PubMed  Google Scholar 

  • Morrisett, R. A., Mott, D. D., Lewis, D. V., Swartzwelder, H. S., & Wilson, W. A. (1991). GABAB-receptor-mediated inhibition of the N-methyl-D-aspartate component of synaptic transmission in the rat hippocampus. Journal of Neuroscience, 11, 203–209.

    CAS  PubMed  Google Scholar 

  • Moser, E. I., Kropff, E., & Moser, M. B. (2008). Place cells, grid cells, and the brain’s spatial representation system. Annual Review of Neuroscience, 31, 69–89.

    Article  CAS  PubMed  Google Scholar 

  • Mott, D. D., & Lewis, D. V. (1991). Facilitation of the induction of long-term potentiation by GABAB receptors. Science, 252, 1718–1720.

    Article  CAS  PubMed  Google Scholar 

  • Mott, D. D., Li, Q., Okazaki, M. M., Turner, D. A., & Lewis, D. V. (1999). GABAB-receptor-mediated currents in interneurons of the dentate-hilus border. Journal of Neurophysiology, 82, 1438–1450.

    CAS  PubMed  Google Scholar 

  • Mott, D. D., Xie, C. W., Wilson, W. A., Swartzwelder, H. S., & Lewis, D. V. (1993). GABAB autoreceptors mediate activity-dependent disinhibition and enhance signal transmission in the dentate gyrus. Journal of Neurophysiology, 69, 674–691.

    CAS  PubMed  Google Scholar 

  • Nicoll, R. A., Malenka, R. C., & Kauer, J. A. (1990). Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Physiological Reviews, 70, 513–565.

    CAS  PubMed  Google Scholar 

  • O’Donnell, P., & Grace, A. A. (1995). Synaptic interactions among excitatory afferents to nucleus accumbens neurons: Hippocampal gating of prefrontal cortical input. Journal of Neuroscience, 15, 3622–3639.

    PubMed  Google Scholar 

  • Otis, T. S., De Koninck, Y., & Mody, I. (1993). Characterization of synaptically elicited GABAB responses using patch-clamp recordings in rat hippocampal slices. Journal of Physiology, 463, 391–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otis, T. S., & Mody, I. (1992). Differential activation of GABAA and GABAB receptors by spontaneously released transmitter. Journal of Neurophysiology, 67, 227–235.

    CAS  PubMed  Google Scholar 

  • Otmakhova, N. A., & Lisman, J. E. (2004). Contribution of Ih and GABAB to synaptically induced afterhyperpolarizations in CA1: A brake on the NMDA response. Journal of Neurophysiology, 92, 2027–2039.

    Article  CAS  PubMed  Google Scholar 

  • Patenaude, C., Chapman, C. A., Bertrand, S., Congar, P., & Lacaille, J. C. (2003). GABAB receptor- and metabotropic glutamate receptor-dependent cooperative long-term potentiation of rat hippocampal GABAA synaptic transmission. Journal of Physiology, 553, 155–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Garci, E., Gassmann, M., Bettler, B., & Larkum, M. E. (2006). The GABAB1b isoform mediates long-lasting inhibition of dendritic Ca2+ spikes in layer 5 somatosensory pyramidal neurons. Neuron, 50, 603–616.

    Article  CAS  PubMed  Google Scholar 

  • Perrin, M. H., Grace, C. R., Riek, R., & Vale, W. W. (2006). The three-dimensional structure of the N-terminal domain of corticotropin-releasing factor receptors: Sushi domains and the B1 family of G protein-coupled receptors. Annals of the New York Academy of Sciences, 1070, 105–119.

    Article  CAS  PubMed  Google Scholar 

  • Pierau, F. K., & Zimmermann, P. (1973). Action of a GABA-derivative on postsynaptic potentials and membrane properties of cats’ spinal motoneurones. Brain Research, 54, 376–380.

    Article  CAS  PubMed  Google Scholar 

  • Pinard, A., Seddik, R., & Bettler, B. (2010). GABAB receptors: Physiological functions and mechanisms of diversity. Advances in Pharmacology, 58, 231–255.

    Article  CAS  PubMed  Google Scholar 

  • Poncer, J. C., Mckinney, R. A., Gahwiler, B. H., & Thompson, S. M. (1997). Either N- or P-type calcium channels mediate GABA release at distinct hippocampal inhibitory synapses. Neuron, 18, 463–472.

    Article  CAS  PubMed  Google Scholar 

  • Poncer, J. C., Mckinney, R. A., Gahwiler, B. H., & Thompson, S. M. (2000). Differential control of GABA release at synapses from distinct interneurons in rat hippocampus. Journal of Physiology, 528(Pt 1), 123–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poncer, J. C., Shinozaki, H., & Miles, R. (1995). Dual modulation of synaptic inhibition by distinct metabotropic glutamate receptors in the rat hippocampus. Journal of Physiology, 485(Pt 1), 121–134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potashner, S. J. (1979). Baclofen: Effects on amino acid release and metabolism in slices of guinea pig cerebral cortex. Journal of Neurochemistry, 32, 103–109.

    Article  CAS  PubMed  Google Scholar 

  • Princivalle, A., Regondi, M. C., Frassoni, C., Bowery, N. G., & Spreafico, R. (2000). Distribution of GABA(B) receptor protein in somatosensory cortex and thalamus of adult rats and during postnatal development. Brain Research Bulletin, 52, 397–405.

    Article  CAS  PubMed  Google Scholar 

  • Raiteri, M. (2008). Presynaptic metabotropic glutamate and GABAB receptors. Handbook of Experimental Pharmacology , (184), 373–407.

    Google Scholar 

  • Reimann, W., Zumstein, A., & Starke, K. (1982). Gamma-aminobutyric acid can both inhibit and facilitate dopamine release in the caudate nucleus of the rabbit. Journal of Neurochemistry, 39, 961–969.

    Article  CAS  PubMed  Google Scholar 

  • Rives, M. L., Vol, C., Fukazawa, Y., Tinel, N., Trinquet, E., Ayoub, M. A., et al. (2009). Crosstalk between GABAB and mGlu1a receptors reveals new insight into GPCR signal integration. EMBO Journal, 28, 2195–2208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins, M. J., Calver, A. R., Filippov, A. K., Hirst, W. D., Russell, R. B., Wood, M. D., et al. (2001). GABA(B2) is essential for g-protein coupling of the GABA(B) receptor heterodimer. Journal of Neuroscience, 21, 8043–8052.

    CAS  PubMed  Google Scholar 

  • Robertson, H. R., Gibson, E. S., Benke, T. A., & Dell’acqua, M. L. (2009). Regulation of postsynaptic structure and function by an A-kinase anchoring protein-membrane-associated guanylate kinase scaffolding complex. Journal of Neuroscience, 29, 7929–7943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubenstein, J. L., & Merzenich, M. M. (2003). Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes, Brain, and Behavior, 2, 255–267.

    Article  CAS  PubMed  Google Scholar 

  • Sanderson, J. L., & Dell’acqua, M. L. (2011). AKAP signaling complexes in regulation of excitatory synaptic plasticity. The Neuroscientist, 17, 321–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scanziani, M. (2000). GABA spillover activates postsynaptic GABA(B) receptors to control rhythmic hippocampal activity. Neuron, 25, 673–681.

    Article  CAS  PubMed  Google Scholar 

  • Scanziani, M. (2002). Competing on the edge. Trends in Neurosciences, 25, 282–283.

    Article  CAS  PubMed  Google Scholar 

  • Schlicker, E., Classen, K., & Gothert, M. (1984). GABAB receptor-mediated inhibition of serotonin release in the rat brain. Naunyn-Schmiedeberg's Archives of Pharmacology, 326, 99–105.

    Article  CAS  PubMed  Google Scholar 

  • Schwenk, J., Metz, M., Zolles, G., Turecek, R., Fritzius, T., Bildl, W., et al. (2010). Native GABA(B) receptors are heteromultimers with a family of auxiliary subunits. Nature, 465, 231–235.

    Article  CAS  PubMed  Google Scholar 

  • Sheng, M., & Kim, E. (2011). The postsynaptic organization of synapses. Cold Spring Harbor Perspectives in Biology, 3.

    Google Scholar 

  • Smith, K. E., Gibson, E. S., & Dell’acqua, M. L. (2006). cAMP-dependent protein kinase postsynaptic localization regulated by NMDA receptor activation through translocation of an A-kinase anchoring protein scaffold protein. Journal of Neuroscience, 26, 2391–2402.

    Article  CAS  PubMed  Google Scholar 

  • Sun, H., Ma, C. L., Kelly, J. B., & Wu, S. H. (2006). GABAB receptor-mediated presynaptic inhibition of glutamatergic transmission in the inferior colliculus. Neuroscience Letters, 399, 151–156.

    Article  CAS  PubMed  Google Scholar 

  • Tabata, T., Araishi, K., Hashimoto, K., Hashimotodani, Y., van der Putten, H., Bettler, B., et al. (2004). Ca2+ activity at GABAB receptors constitutively promotes metabotropic glutamate signaling in the absence of GABA. Proceedings of the National Academy of Sciences of the United States of America, 101, 16952–16957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabuchi, K., Blundell, J., Etherton, M. R., Hammer, R. E., Liu, X., Powell, C. M., et al. (2007). A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science, 318, 71–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi, T., Kajikawa, Y., & Tsujimoto, T. (1998). G-Protein-coupled modulation of presynaptic calcium currents and transmitter release by a GABAB receptor. Journal of Neuroscience, 18, 3138–3146.

    CAS  PubMed  Google Scholar 

  • Terunuma, M., Pangalos, M. N., & Moss, S. J. (2010a). Functional modulation of GABAB receptors by protein kinases and receptor trafficking. Advances in Pharmacology, 58, 113–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terunuma, M., Revilla-Sanchez, R., Quadros, I. M., Deng, Q., Deeb, T. Z., Lumb, M., et al. (2014). Postsynaptic GABAB receptor activity regulates excitatory neuronal architecture and spatial memory. Journal of Neuroscience, 34, 804–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terunuma, M., Vargas, K. J., Wilkins, M. E., Ramirez, O. A., Jaureguiberry-Bravo, M., Pangalos, M. N., et al. (2010b). Prolonged activation of NMDA receptors promotes dephosphorylation and alters postendocytic sorting of GABAB receptors. Proceedings of the National Academy of Sciences of the United States of America, 107, 13918–13923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson, S. M., & Gahwiler, B. H. (1989). Activity-dependent disinhibition. III. Desensitization and GABAB receptor-mediated presynaptic inhibition in the hippocampus in vitro. Journal of Neurophysiology, 61, 524–533.

    CAS  PubMed  Google Scholar 

  • Thompson, S. M., & Gahwiler, B. H. (1992). Comparison of the actions of baclofen at pre- and postsynaptic receptors in the rat hippocampus in vitro. Journal of Physiology, 451, 329–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiao, J. Y., Bradaia, A., Biermann, B., Kaupmann, K., Metz, M., Haller, C., et al. (2008). The sushi domains of secreted GABA(B1) isoforms selectively impair GABA(B) heteroreceptor function. Journal of Biological Chemistry, 283, 31005–31011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traynelis, S. F., Wollmuth, L. P., McBain, C. J., Menniti, F. S., Vance, K. M., Ogden, K. K., et al. (2010). Glutamate receptor ion channels: Structure, regulation, and function. Pharmacological Reviews, 62, 405–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tunquist, B. J., Hoshi, N., Guire, E. S., Zhang, F., Mullendorff, K., Langeberg, L. K., et al. (2008). Loss of AKAP150 perturbs distinct neuronal processes in mice. Proceedings of the National Academy of Sciences of the United States of America, 105, 12557–12562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulrich, D., & Bettler, B. (2007). GABA(B) receptors: Synaptic functions and mechanisms of diversity. Current Opinion in Neurobiology, 17, 298–303.

    Article  CAS  PubMed  Google Scholar 

  • Ventura, R., & Harris, K. M. (1999). Three-dimensional relationships between hippocampal synapses and astrocytes. Journal of Neuroscience, 19, 6897–6906.

    CAS  PubMed  Google Scholar 

  • Vigot, R., Barbieri, S., Brauner-Osborne, H., Turecek, R., Shigemoto, R., Zhang, Y. P., et al. (2006). Differential compartmentalization and distinct functions of GABAB receptor variants. Neuron, 50, 589–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vigot, R., & Batini, C. (1997). GABA(B) receptor activation of Purkinje cells in cerebellar slices. Neuroscience Research, 29, 151–160.

    Article  CAS  PubMed  Google Scholar 

  • von Krosigk, M., Bal, T., & McCormick, D. A. (1993). Cellular mechanisms of a synchronized oscillation in the thalamus. Science, 261, 361–364.

    Article  Google Scholar 

  • Watanabe, M., Maemura, K., Kanbara, K., Tamayama, T., & Hayasaki, H. (2002). GABA and GABA receptors in the central nervous system and other organs. International Review of Cytology, 213, 1–47.

    Article  CAS  PubMed  Google Scholar 

  • Westphal, R. S., Tavalin, S. J., Lin, J. W., Alto, N. M., Fraser, I. D., Langeberg, L. K., et al. (1999). Regulation of NMDA receptors by an associated phosphatase-kinase signaling complex. Science, 285, 93–96.

    Article  CAS  PubMed  Google Scholar 

  • Wong, W., & Scott, J. D. (2004). AKAP signalling complexes: Focal points in space and time. Nature Reviews Molecular Cell Biology, 5, 959–970.

    Article  CAS  PubMed  Google Scholar 

  • Wu, L. G., & Saggau, P. (1995). GABAB receptor-mediated presynaptic inhibition in guinea-pig hippocampus is caused by reduction of presynaptic Ca2+ influx. Journal of Physiology, 485(Pt 3), 649–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang, Z., Huguenard, J. R., & Prince, D. A. (1998). Cholinergic switching within neocortical inhibitory networks. Science, 281, 985–988.

    Article  CAS  PubMed  Google Scholar 

  • Xu, J., & Wojcik, W. J. (1986). Gamma aminobutyric acid B receptor-mediated inhibition of adenylate cyclase in cultured cerebellar granule cells: Blockade by islet-activating protein. Journal of Pharmacology and Experimental Therapeutics, 239, 568–573.

    CAS  PubMed  Google Scholar 

  • Zhang, Z., Zhang, W., Huang, S., Sun, Q., Wang, Y., Hu, Y., et al. (2015). GABAB receptor promotes its own surface expression by recruiting a Rap1-dependent signaling cascade. Journal of Cell Science, 128, 2302–2313.

    Article  CAS  PubMed  Google Scholar 

  • Zoghbi, H. Y. (2003). Postnatal neurodevelopmental disorders: Meeting at the synapse? Science, 302, 826–830.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Dr. Kevin Wilkinson (University of Bristol) and Dr. Samantha McLean (University of Bradford) for comments on the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sriharsha Kantamneni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kantamneni, S. (2016). Modulation of Neurotransmission by the GABAB Receptor. In: Colombo, G. (eds) GABAB Receptor. The Receptors, vol 29. Humana Press, Cham. https://doi.org/10.1007/978-3-319-46044-4_7

Download citation

Publish with us

Policies and ethics