Skip to main content

Probabilistic and Likelihood-Based Methods for Protein Identification from MS/MS Data

  • Chapter
  • First Online:
  • 2908 Accesses

Part of the book series: Frontiers in Probability and the Statistical Sciences ((FROPROSTAS))

Abstract

The process of identification of peptides from the mass spectra and the constituent proteins in a sample is called protein identification. In the current literature, there exist many proposed approaches for the protein identification problem based on tandem mass spectrometry (MS/MS) data. While there are many two-step protein identification procedures that first identify peptides in a separate process and then use the results in protein identification, in recent years there have been attempts to develop a one-step solution to the problem through simultaneous identification of proteins and peptides in a sample. We briefly introduce the probabilistic and likelihood-based two-step and one-step procedures and report some comparative performances of these procedures for different MS/MS data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yates, J. R., Ruse, C. I., & Nakorchevsky, M. (2009). Proteomics by mass spectrometry: Approaches, advances, and applications. Annual Review of Biomedical Engineering, 11(1), 49–79.

    Article  Google Scholar 

  2. Eng, J. K., McCormack, A. L., & Yates, J. R., III. (1994). An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. Journal of the American Society for Mass Spectrometry, 5(11), 976–989.

    Article  Google Scholar 

  3. Eng, J. K., Fischer, B., Grossmann, J., & Maccoss, M. J. (2008). A fast SEQUEST cross correlation algorithm. Journal of Proteome Research, 7(10), 4598–4602.

    Article  Google Scholar 

  4. Diament, B. J., & Noble, W. S. (2011). Faster SEQUEST searching for peptide identification from tandem mass spectra. Journal of Proteome Research, 10(9), 3871–3879.

    Article  Google Scholar 

  5. Craig, R., & Beavis, R. C. (2004). TANDEM: Matching proteins with tandem mass spectra. Bioinformatics, 20(9), 1466–1467.

    Article  Google Scholar 

  6. Perkins, D. N., Pappin, D. J., Creasy, D. M., & Cottrell, J. S. (1999). Probability-based protein identification by searching sequence databases using mass spectrometry. Electrophoresis, 20(18), 3551–3567.

    Article  Google Scholar 

  7. Clauser, K. R., Baker, P., & Burlingame, A. L. (1999). Role of accurate mass measurement (+/− 10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Analytical Chemistry, 71(14), 2871–2882.

    Article  Google Scholar 

  8. Kim, S., Gupta, N., & Pevzner, P. A. (2008). Spectral probabilities and generating functions of tandem mass spectra: A strike against decoy databases. Journal of Proteome Research, 7(8), 3354–3363.

    Article  Google Scholar 

  9. Swaney, D. L., Wenger, C. D., & Coon, J. J. (2010). Value of using multiple proteases for large-scale mass spectrometry-based proteomics. Journal of Proteome Research, 9(3), 1323–1329.

    Article  Google Scholar 

  10. Granholm, V., Kim, S., Navarro, J. C. F., Sjolund, E., Smith, R. D., & Kall, L. (2014). Fast and accurate database searches with MSGF+ Percolator. Journal of Proteome Research, 13(2), 890–897.

    Article  Google Scholar 

  11. Keller, A., Purvine, S., Nesvizhskii, A. I., Stolyar, S., Goodlett, D. R., & Kolker, E. (2002). Experimental protein mixture for validating tandem mass spectral analysis. Omics, 6(2), 207–212.

    Article  Google Scholar 

  12. Nesvizhskii, A. I., & Aebersold, R. (2004). Analysis, statistical validation and dissemination of large-scale proteomics data sets generated by tandem MS. Drug Discovery Today, 9(4), 173–181.

    Article  Google Scholar 

  13. Nesvizhskii, A. I., Keller, A., Kolker, E., & Aebersold, R. (2003). A statistical model for identifying proteins by tandem mass spectrometry. Analytical Chemistry, 75(17), 4646–4658.

    Article  Google Scholar 

  14. Shen, C., Wang, Z., Shankar, G., Zhang, X., & Li, L. (2008). A hierarchical statistical model to assess the confidence of peptides and proteins inferred from tandem mass spectrometry. Bioinformatics, 24(2), 202–208.

    Article  Google Scholar 

  15. Sikdar, S., Gill, R., & Datta, S. (2015). Improving protein identification from tandem mass spectrometry data by one-step methods and integrating data from other platforms. Briefings in Bioinformatics, 17(2), 262–269.

    Google Scholar 

  16. Keller, A., Nesvizhskii, A. I., Kolker, E., & Aebersold, R. (2002). Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Analytical Chemistry, 74(20), 5383–5592.

    Article  Google Scholar 

  17. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. New York: Springer.

    Book  MATH  Google Scholar 

  18. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1), 1–38.

    MathSciNet  MATH  Google Scholar 

  19. Shteynberg, D., Deutsch, E. W., Lam, H., Eng, J. K., Sun, Z., Tasman, N., et al. (2011). iProphet: Multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates. Molecular & Cellular Proteomics, 10(12), 1–15.

    Article  Google Scholar 

  20. Mitra, R., Gill, R., Sikdar, S., & Datta, S. (2015). Bayesian hierarchical model for protein identifications. Under review.

    Google Scholar 

  21. Li, Q., MacCoss, M., & Stephens, M. (2010). A nested mixture model for protein identification using mass spectrometry. The Annals of Applied Statistics, 4(2), 962–987.

    Article  MathSciNet  MATH  Google Scholar 

  22. Huang, T., Wang, J., Yu, W., & He, Z. (2012). Protein inference: A review. Briefings in Bioinformatics, 13(5), 586–614.

    Article  Google Scholar 

  23. Nesvizhskii, A. I., Vitek, O., & Aebersold, R. (2007). Analysis and validation of proteomic data generated by tandem mass spectrometry. Nature Methods, 4(10), 787–797.

    Article  Google Scholar 

  24. Serang, O., & Noble, W. (2012). A review of statistical methods for protein identification using tandem mass spectrometry. Stat Interface, 5(1), 3–20.

    Article  MathSciNet  MATH  Google Scholar 

  25. Bern, M. W., & Kil, Y. J. (2011). Two-dimensional target decoy strategy for shotgun proteomics. Journal of Proteome Research, 10(12), 5296–5301.

    Article  Google Scholar 

  26. Shi, J., & Wu, F.-X. (2012). A feedback framework for protein inference with peptides identified from tandem mass spectra. Proteome Science, 10, 68.

    Article  Google Scholar 

  27. Shi, J., Chen, B., & Wu, F.-X. (2013). Unifying protein inference and peptide identification with feedback to update consistency between peptides. Proteomics, 13(2), 239–247.

    Article  Google Scholar 

  28. Spivak, M., Weston, J., Tomazela, D., Maccoss, M. J., & Noble, W. S. (2012). Direct maximization of protein identifications from tandem mass spectra. Molecular & Cellular Proteomics, 11(2), M111.012161.

    Google Scholar 

  29. Purvine, S., Picone, A. F., & Kolker, E. (2004). Standard mixtures for proteome studies. OMICS, 8(1), 79–92.

    Article  Google Scholar 

  30. Elias, J. E., Haas, W., Faherty, B. K., & Gygi, S. P. (2005). Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nature Methods, 2(9), 667–675.

    Article  Google Scholar 

  31. Kall, L., Canterbury, J., Weston, J., Noble, M. J., & MacCoss, W. S. (2007). A semi-supervised machine learning technique for peptide identification from shotgun proteomics datasets. Nature Methods, 4, 923–925.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Gill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gill, R., Datta, S. (2017). Probabilistic and Likelihood-Based Methods for Protein Identification from MS/MS Data. In: Datta, S., Mertens, B. (eds) Statistical Analysis of Proteomics, Metabolomics, and Lipidomics Data Using Mass Spectrometry. Frontiers in Probability and the Statistical Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-45809-0_4

Download citation

Publish with us

Policies and ethics