Skip to main content

Host Response to Synthetic Versus Natural Biomaterials

  • Chapter
  • First Online:
The Immune Response to Implanted Materials and Devices

Abstract

Biomaterials have gained tremendous attention in regenerative medicine and tissue engineering applications due to their ability to enhance functional tissue regeneration. After implantation of biomaterial-based device or drug carrier, it comes in contact with surrounding cells and consequently elicits confined and/or chronic inflammatory responses. The immune responses to biomaterials do not depend only on the method of implantation such as surgery and injection but also depend on source of biomaterials and their physicochemical properties such as molecular weight, chemical composition, mechanical properties and degradation rate. Therefore, it is necessary to thoroughly understand the biological responses to the implanted biomaterials. In this chapter, a brief discussion about different natural and synthetic biomaterials and their inflammatory responses is provided. Different strategies to minimize the immune response have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams DF (2009) On the nature of biomaterials. Biomaterials 30(30):5897–5909

    Article  Google Scholar 

  2. Wang X (2013) Overview on biocompatibilities of implantable biomaterials. Adv Biomater Sci Appl Biomed. doi:10.5772/53461

    Google Scholar 

  3. Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29(20):2941–2953

    Article  Google Scholar 

  4. Morais JM, Papadimitrakopoulos F, Burgess DJ (2010) Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J 12(2):188–196

    Article  Google Scholar 

  5. Boehler RM, Graham JG, Shea LD (2011) Tissue engineering tools for modulation of the immune response. Biotechniques 51(4):239–240, 242, 244 passim

    Google Scholar 

  6. Tidball JG, Wehling-Henricks M (2007) Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in mice in vivo. J Physiol 578(1):327–336

    Article  Google Scholar 

  7. Franz S, Rammelt S, Scharnweber D et al (2011) Immune responses to implants – A review of the implications for the design of immunomodulatory biomaterials. Biomaterials 32(28):6692–6709

    Article  Google Scholar 

  8. Bao Ha TL, Quan TM, Nguyen Vu D, Si DM (2013) Naturally derived biomaterials: preparation and application, regenerative medicine and tissue engineering. In: Andrades JA (ed). InTech. doi:10.5772/55668

  9. Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20(2):86–100

    Article  Google Scholar 

  10. Ige OO, Umoru LE, Aribo S (2012) Natural products: a minefield of biomaterials. ISRN Mater Sci 2012:1–20

    Article  Google Scholar 

  11. Lapidot S, Meirovitch S, Sharon S et al (2012) Clues for biomimetics from natural composite materials. Nanomedicine 7(9):1409–1423

    Article  Google Scholar 

  12. Ruys A (2013) Biomimetic biomaterials structure and applications, vol 57, Woodhead publishing series in biomaterials. Woodhead, Cambridge, UK, p 344, p. 1 online resource

    Book  Google Scholar 

  13. Fishman JM, Wiles K, Wood KJ (2015) Host response to biomaterials the impact of host response on biomaterial selection. Academic Press, Cambridge, MA, pp 151–187

    Book  Google Scholar 

  14. Badylak SF, Gilbert TW (2008) Immune response to biologic scaffold materials. Semin Immunol 20(2):109–116

    Article  Google Scholar 

  15. Aamodt JM, Grainger DW (2016) Extracellular matrix-based biomaterial scaffolds and the host response. Biomaterials 86:68–82

    Article  Google Scholar 

  16. Parenteau-Bareil R, Gauvin R, Berthod F (2010) Collagen-based biomaterials for tissue engineering applications. Materials 3(3):1863–1887

    Article  Google Scholar 

  17. Wnek GE, Bowlin GL (2008) Encyclopedia of biomaterials and biomedical engineering. Informa Healthcare, New York, p. 1 online resource (4 v. (xxviii, 3110, 3172 p.))

    Google Scholar 

  18. Zeugolis D, Raghunath M, Ducheyne P et al (2011) Collagen: materials analysis and implant uses. Comprehens Biomater 2:261

    Article  Google Scholar 

  19. van der Rest M, Garrone R, Herbage D (1993) Collagen: a family of proteins with many facets. Adv Mol Cell Biol 6:1–67

    Article  Google Scholar 

  20. Kielty CM, Grant ME (2003) The collagen family: structure, assembly, and organization in the extracellular matrix. In: Connective tissue and its heritable disorders: molecular, genetic, and medical aspects, 2nd edn. Wiley, Hoboken, NJ, p 159–221

    Google Scholar 

  21. Chen QZ, Liang SL, Thouas GA (2013) Elastomeric biomaterials for tissue engineering. Prog Polym Sci 38(3–4):584–671

    Article  Google Scholar 

  22. Gosline J, Lillie M, Carrington E et al (2002) Elastic proteins: biological roles and mechanical properties. Philos Trans R Soc B Biol Sci 357(1418):121–132

    Article  Google Scholar 

  23. Narotam PK, Jose S, Nathoo N et al (2004) Collagen matrix (DuraGen) in dural repair: analysis of a new modified technique. Spine 29(24):2861–2867, discussion 2868-2869

    Article  Google Scholar 

  24. Thornton JF, Rohrich RJ (2005) Dermal substitute (Integra) for open nasal wounds. Plast Reconstr Surg 116(2):677

    Article  Google Scholar 

  25. Tedder ME, Liao J, Weed B et al (2008) Stabilized collagen scaffolds for heart valve tissue engineering. Tissue Eng Part A 15(6):1257–1268

    Article  Google Scholar 

  26. Yost MJ, Baicu CF, Stonerock CE et al (2004) A novel tubular scaffold for cardiovascular tissue engineering. Tissue Eng 10(1–2):273–284

    Article  Google Scholar 

  27. Liu C (2015) Collagen–hydroxyapatite composite scaffolds for tissue engineering. In: Mucalo M (ed) Hydroxyapatite (Hap) for biomedical applications. Woodhead, Cambridge, pp 211–234

    Chapter  Google Scholar 

  28. Phillips JB, Bunting SC, Hall SM et al (2005) Neural tissue engineering: a self-organizing collagen guidance conduit. Tissue Eng 11(9–10):1611–1617

    Article  Google Scholar 

  29. Schmitt F, Levine L, Drake M et al (1964) The antigenicity of tropocollagen. Proc Natl Acad Sci 51(3):493–497

    Article  Google Scholar 

  30. Steffen C, Timpl R, Wolff I (1968) Immunogenicity and specificity of collagen: V. Demonstration of three different antigenic determinants on calf collagen. Immunology 15(1):135

    Google Scholar 

  31. Michaeli D, Martin GR, Kettman J et al (1969) Localization of antigenic determinants in the polypeptide chains of collagen. Science 166(3912):1522–1523

    Article  Google Scholar 

  32. Furthmayr H, Beil W, Timpl R (1971) Different antigenic determinants in the polypeptide chains of human collagen. FEBS Lett 12(6):341–344

    Article  Google Scholar 

  33. Timpl R, Beil W, Furthmayr H et al (1971) Characterization of conformation independent antigenic determinants in the triple-helical part of calf and rat collagen. Immunology 21(6):1017

    Google Scholar 

  34. Smith QT (1975) Collagen metabolism in wound healing. In: Trauma. Springer, Heidelberg, pp 31–45

    Chapter  Google Scholar 

  35. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8–9):762–798

    Article  Google Scholar 

  36. Wang X (2006) A comparison of chitosan and collagen sponges as hemostatic dressings. J Bioact Compat Polym 21(1):39–54

    Article  Google Scholar 

  37. Zeugolis D, Paul R, Attenburrow G (2008) Factors influencing the properties of reconstituted collagen fibers prior to self‐assembly: animal species and collagen extraction method. J Biomed Mater Res A 86(4):892–904

    Article  Google Scholar 

  38. Zeugolis DI, Khew ST, Yew ES et al (2008) Electro-spinning of pure collagen nano-fibres–just an expensive way to make gelatin? Biomaterials 29(15):2293–2305

    Article  Google Scholar 

  39. Delgado LM, Pandit A, Zeugolis DI (2014) Influence of sterilisation methods on collagen-based devices stability and properties. Expert Rev Med Devices 11(3):305–314

    Article  Google Scholar 

  40. Brown BN, Londono R, Tottey S et al (2012) Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater 8(3):978–987

    Article  Google Scholar 

  41. Ye Q, Harmsen MC, van Luyn MJ et al (2010) The relationship between collagen scaffold cross-linking agents and neutrophils in the foreign body reaction. Biomaterials 31(35):9192–9201

    Article  Google Scholar 

  42. Gough JE, Scotchford CA, Downes S (2002) Cytotoxicity of glutaraldehyde crosslinked collagen/poly (vinyl alcohol) films is by the mechanism of apoptosis. J Biomed Mater Res 61(1):121–130

    Article  Google Scholar 

  43. Ward AG, Courts A (1977) The science and technology of gelatin. In: Ward AG, Courts A (eds) Food science and technology: a series of monographs. Academic, New York, p 564, xvi

    Google Scholar 

  44. Kakiuchi M, Hosoya T, Takaoka K et al (1985) Human bone matrix gelatin as a clinical alloimplant. A retrospective review of 160 cases. Int Orthop 9(3):181–188

    Article  Google Scholar 

  45. Muzzarelli RA, Boudrant J, Meyer D et al (2012) Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: a tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydr Polym 87(2):995–1012

    Article  Google Scholar 

  46. Kundu PP, Sarkar K (2011) Natural polymeric vectors in gene therapy, Biopolymers. John Wiley, New York, pp 575–603

    Google Scholar 

  47. Coutinho DF, Sant S, Shakiba M et al (2012) Microfabricated photocrosslinkable polyelectrolyte-complex of chitosan and methacrylated gellan gum. J Mater Chem 22(33):17262

    Article  Google Scholar 

  48. Rabanel J-M, Bertrand N, Sant S et al (2006) Polysaccharide hydrogels for the preparation of immunoisolated cell delivery systems. Polysaccharides for drug delivery and pharmaceutical applications. ACS Symp Ser 934:305–339

    Article  Google Scholar 

  49. Prudden JF, Migel P, Hanson P et al (1970) The discovery of a potent pure chemical wound-healing accelerator. Am J Surg 119(5):560–564

    Article  Google Scholar 

  50. Muzzarelli R, Baldassarre V, Conti F et al (1988) Biological activity of chitosan: ultrastructural study. Biomaterials 9(3):247–252

    Article  Google Scholar 

  51. Nakajima M, Atsumi K, Kifune K et al (1986) Chitin is an effective material for sutures. Jpn J Surg 16(6):418–424

    Article  Google Scholar 

  52. Mukhopadhyay P, Sarkar K, Chakraborty M et al (2013) Oral insulin delivery by self-assembled chitosan nanoparticles: in vitro and in vivo studies in diabetic animal model. Mater Sci Eng C 33(1):376–382

    Article  Google Scholar 

  53. Sarkar K, Chatterjee A, Chakraborti G et al (2013) Blood compatible N-maleyl chitosan-graft-PAMAM copolymer for enhanced gene transfection. Carbohydr Polym 98(1):596–606

    Article  Google Scholar 

  54. VandeVord PJ, Matthew HW, DeSilva SP et al (2002) Evaluation of the biocompatibility of a chitosan scaffold in mice. J Biomed Mater Res 59(3):585–590

    Article  Google Scholar 

  55. Usami Y, Okamoto Y, Minami S et al (1994) Migration of canine neutrophils to chitin and chitosan. J Vet Med Sci 56(6):1215–1216

    Article  Google Scholar 

  56. Mathews S, Kaladhar K, Sharma CP (2006) Cell mimetic monolayer supported chitosan‐haemocompatibility studies. J Biomed Mater Res A 79(1):147–152

    Article  Google Scholar 

  57. Wu N, Wen Z-S, Xiang X-W et al (2015) Immunostimulative activity of low molecular weight chitosans in RAW264.7 macrophages. Mar Drugs 13(10):6210

    Article  Google Scholar 

  58. Oliveira MI, Santos SG, Oliveira MJ et al (2012) Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation. Eur Cell Mater 24:136–152

    Google Scholar 

  59. Yui T, Imada K, Okuyama K et al (1994) Molecular and crystal structure of the anhydrous form of chitosan. Macromolecules 27(26):7601–7605

    Article  Google Scholar 

  60. Tømmeraas K, Köping-Höggård M, Vårum KM et al (2002) Preparation and characterisation of chitosans with oligosaccharide branches. Carbohydr Res 337(24):2455–2462

    Article  Google Scholar 

  61. Chen C-L, Wang Y-M, Liu C-F et al (2008) The effect of water-soluble chitosan on macrophage activation and the attenuation of mite allergen-induced airway inflammation. Biomaterials 29(14):2173–2182

    Article  Google Scholar 

  62. Urtti A, Bajaj G, Van Alstine WG et al (2012) Zwitterionic chitosan derivative, a new biocompatible pharmaceutical excipient, prevents endotoxin-mediated cytokine release. PLoS One 7(1):e30899

    Article  Google Scholar 

  63. Amarnath LP, Srinivas A, Ramamurthi A (2006) In vitro hemocompatibility testing of UV-modified hyaluronan hydrogels. Biomaterials 27(8):1416–1424

    Article  Google Scholar 

  64. Jansen K, Van Der Werff J, Van Wachem P et al (2004) A hyaluronan-based nerve guide: in vitro cytotoxicity, subcutaneous tissue reactions, and degradation in the rat. Biomaterials 25(3):483–489

    Article  Google Scholar 

  65. Rah MJ (2011) A review of hyaluronan and its ophthalmic applications. Optometry 82(1):38–43

    Article  Google Scholar 

  66. De Andres-Santos A, Velasco-Martín A, Hernández-Velasco E et al (1994) Thermal behaviour of aqueous solutions of sodium hyaluronate from different commercial sources. Thermochimica Acta 242:153–160

    Article  Google Scholar 

  67. Peattie RA, Rieke ER, Hewett EM et al (2006) Dual growth factor-induced angiogenesis in vivo using hyaluronan hydrogel implants. Biomaterials 27(9):1868–1875

    Article  Google Scholar 

  68. Pike DB, Cai S, Pomraning KR et al (2006) Heparin-regulated release of growth factors in vitro and angiogenic response in vivo to implanted hyaluronan hydrogels containing VEGF and bFGF. Biomaterials 27(30):5242–5251

    Article  Google Scholar 

  69. Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering—A review. Carbohydr Polym 92(2):1262–1279

    Article  Google Scholar 

  70. Yamanlar S, Sant S, Boudou T et al (2011) Surface functionalization of hyaluronic acid hydrogels by polyelectrolyte multilayer films. Biomaterials 32(24):5590–5599

    Article  Google Scholar 

  71. Johnson P, Maiti A, Brown KL et al (2000) A role for the cell adhesion molecule CD44 and sulfation in leukocyte–endothelial cell adhesion during an inflammatory response? Biochem Pharmacol 59(5):455–465

    Article  Google Scholar 

  72. Puré E, Cuff CA (2001) A crucial role for CD44 in inflammation. Trends Mol Med 7(5):213–221

    Article  Google Scholar 

  73. Termeer C, Sleeman JP, Simon JC (2003) Hyaluronan–magic glue for the regulation of the immune response? Trends Immunol 24(3):112–114

    Article  Google Scholar 

  74. Rayahin JE, Buhrman JS, Zhang Y et al (2015) High and low molecular weight hyaluronic acid differentially influence macrophage activation. ACS Biomater Sci Eng 1(7):481–493

    Article  Google Scholar 

  75. Kajahn J, Franz S, Rueckert E et al (2012) Artificial extracellular matrices composed of collagen I and high sulfated hyaluronan modulate monocyte to macrophage differentiation under conditions of sterile inflammation. Biomatter 2(4):226–273

    Article  Google Scholar 

  76. Capila I, Linhardt RJ (2002) Heparin–protein interactions. Angew Chem Int Ed 41(3):390–412

    Article  Google Scholar 

  77. Mizrahy S, Peer D (2012) Polysaccharides as building blocks for nanotherapeutics. Chem Soc Rev 41(7):2623–2640

    Article  Google Scholar 

  78. Ekre H-P, Naparstek Y, Lider O et al (1992) Anti-inflammatory effects of heparin and its derivatives inhibition of complement and of lymphocyte migration. In: Lane DA, Björk I, Lindahl U (eds) Heparin and related polysaccharides. Springer, Heidelberg, pp 329–340

    Chapter  Google Scholar 

  79. Darien BJ, Fareed J, Centgraf KS et al (1998) Low molecular weight heparin prevents the pulmonary hemodynamic and pathomorphologic effects of endotoxin in a porcine acute lung injury model. Shock 9(4):274–281

    Article  Google Scholar 

  80. Hochart H, Jenkins PV, Preston RJ et al (2008) Concentration-dependent roles for heparin in modifying liopolysaccharide-induced activation of mononuclear cells in whole blood. Thromb Haemost 99(3):570–575

    Google Scholar 

  81. Gombotz WR, Wee SF (2012) Protein release from alginate matrices. Adv Drug Deliv Rev 64:194–205

    Article  Google Scholar 

  82. Mukhopadhyay P, Sarkar K, Soam S et al (2013) Formulation of pH‐responsive carboxymethyl chitosan and alginate beads for the oral delivery of insulin. J Appl Polym Sci 129(2):835–845

    Article  Google Scholar 

  83. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351

    Article  Google Scholar 

  84. Orive G, Ponce S, Hernandez R et al (2002) Biocompatibility of microcapsules for cell immobilization elaborated with different type of alginates. Biomaterials 23(18):3825–3831

    Article  Google Scholar 

  85. Arıca MY, Arpa Ç, Ergene A et al (2003) Ca-alginate as a support for Pb (II) and Zn (II) biosorption with immobilized Phanerochaete chrysosporium. Carbohydr Polym 52(2):167–174

    Article  Google Scholar 

  86. Stephen AM (1995) Food polysaccharides and their applications, 67th edn. CRC, Boca Raton, FL

    Google Scholar 

  87. Yang D, Jones KS (2009) Effect of alginate on innate immune activation of macrophages. J Biomed Mater Res A 90(2):411–418

    Article  Google Scholar 

  88. Thomas A, Harding K, Moore K (2000) Alginates from wound dressings activate human macrophages to secrete tumour necrosis factor-α. Biomaterials 21(17):1797–1802

    Article  Google Scholar 

  89. Matsumoto T, Kawai MMasuda T (1991) Influence of concentration and mannuronate/guluronate [correction of gluronate] ratio on steady flow properties of alginate aqueous systems. Biorheology 29(4):411–417

    Google Scholar 

  90. Iwamoto M, Kurachi M, Nakashima T et al (2005) Structure–activity relationship of alginate oligosaccharides in the induction of cytokine production from RAW264. 7 cells. FEBS Lett 579(20):4423–4429

    Article  Google Scholar 

  91. Altman GH, Diaz F, Jakuba C et al (2003) Silk-based biomaterials. Biomaterials 24(3):401–416

    Article  Google Scholar 

  92. MacIntosh AC, Kearns VR, Crawford A et al (2008) Skeletal tissue engineering using silk biomaterials. J Tissue Eng Regen Med 2(2‐3):71–80

    Article  Google Scholar 

  93. Meinel L, Fajardo R, Hofmann S et al (2005) Silk implants for the healing of critical size bone defects. Bone 37(5):688–698

    Article  Google Scholar 

  94. Cassinelli C, Cascardo G, Morra M et al (2006) Physical-chemical and biological characterization of silk fibroin-coated porous membranes for medical applications. Int J Artif Organs 29(9):881

    Google Scholar 

  95. Zhang X, Baughman CB, Kaplan DL (2008) In vitro evaluation of electrospun silk fibroin scaffolds for vascular cell growth. Biomaterials 29(14):2217–2227

    Article  Google Scholar 

  96. Wang X, Zhang X, Castellot J et al (2008) Controlled release from multilayer silk biomaterial coatings to modulate vascular cell responses. Biomaterials 29(7):894–903

    Article  Google Scholar 

  97. Steins A, Dik P, Müller WH et al (2015) In vitro evaluation of spider silk meshes as a potential biomaterial for bladder reconstruction. PLoS One 10(12)

    Google Scholar 

  98. Gillespie DB, Viney C, Yager P (1994) Raman spectroscopic analysis of the secondary structure of spider silk fibers. In: Silk polymers: materials science and biotechnology. ACS Symposium Series, vol 544. ACS Publications, Washington, DC

    Google Scholar 

  99. Soong HK, Kenyon KR (1984) Adverse reactions to virgin silk sutures in cataract surgery. Ophthalmology 91(5):479–483

    Article  Google Scholar 

  100. Panilaitis B, Altman GH, Chen J et al (2003) Macrophage responses to silk. Biomaterials 24(18):3079–3085

    Article  Google Scholar 

  101. Meinel L, Hofmann S, Karageorgiou V et al (2005) The inflammatory responses to silk films in vitro and in vivo. Biomaterials 26(2):147–155

    Article  Google Scholar 

  102. Liu H, Ge Z, Wang Y et al (2007) Modification of sericin‐free silk fibers for ligament tissue engineering application. J Biomed Mater Res B Appl Biomater 82(1):129–138

    Article  Google Scholar 

  103. Wang Y, Rudym DD, Walsh A et al (2008) In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials 29(24):3415–3428

    Article  Google Scholar 

  104. Ghanaati S, Orth C, Unger RE et al (2010) Fine‐tuning scaffolds for tissue regeneration: effects of formic acid processing on tissue reaction to silk fibroin. J Tissue Eng Regen Med 4(6):464–472

    Google Scholar 

  105. Badylak SF (2014) Decellularized allogeneic and xenogeneic tissue as a bioscaffold for regenerative medicine: factors that influence the host response. Ann Biomed Eng 42(7):1517–1527

    Article  Google Scholar 

  106. Valentin JE, Badylak JS, McCabe GP, Badylak SF (2006) Extracellular matrix bioscaffolds for orthopaedic applications. A comparative histologic study. J Bone Joint Surg Am 88(12):2673

    Google Scholar 

  107. Ravi S, Chaikof EL (2010) Biomaterials for vascular tissue engineering. Regen Med 5(1):107–120

    Article  Google Scholar 

  108. Rotter N, Ung F, Roy AK et al (2005) Role for interleukin 1α in the inhibition of chondrogenesis in autologous implants using polyglycolic acid-polylactic acid scaffolds. Tissue Eng 11(1–2):192–200

    Article  Google Scholar 

  109. Santavirta S, Konttinen YT, Saito T et al (1990) Immune response to polyglycolic acid implants. J Bone Joint Surg 72(4):597–600

    Google Scholar 

  110. Cortiella J, Nichols JE, Kojima K et al (2006) Tissue-engineered lung: anin vivoandin vitrocomparison of polyglycolic acid and pluronic F-127 hydrogel/somatic lung progenitor cell constructs to support tissue growth. Tissue Eng 12(5):1213–1225

    Article  Google Scholar 

  111. Raya-Rivera A, Esquiliano DR, Yoo JJ et al (2011) Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet 377(9772):1175–1182

    Article  Google Scholar 

  112. Ceonzo K, Gaynor A, Shaffer L et al (2006) Polyglycolic acid-induced inflammation: role of hydrolysis and resulting complement activation. Tissue Eng 12(2):301–308

    Article  Google Scholar 

  113. Tamai H, Igaki K, Kyo E et al (2000) Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation 102(4):399–404

    Article  Google Scholar 

  114. Bergsma JE, Bos RRM, Rozema FR et al (1996) Biocompatibility of intraosseously implanted predegraded poly(lactide): an animal study. J Mater Sci Mater Med 7(1):1–7

    Article  Google Scholar 

  115. Aframian DJ, Redman RS, Yamano S et al (2002) Tissue compatibility of two biodegradable tubular scaffolds implanted adjacent to skin or buccal mucosa in mice. Tissue Eng 8(4):649–659

    Article  Google Scholar 

  116. Lam KH, Schakenraad JM, Esselbrugge H et al (1993) The effect of phagocytosis of poly(L-lactic acid) fragments on cellular morphology and viability. J Biomed Mater Res 27(12):1569–1577

    Article  Google Scholar 

  117. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog Polym Sci 35(10):1217–1256

    Article  Google Scholar 

  118. Mukundan S, Sant V, Goenka S et al (2015) Nanofibrous composite scaffolds of poly(ester amides) with tunable physicochemical and degradation properties. Eur Polym J 68:21–35

    Article  Google Scholar 

  119. Gaharwar AK, Nikkhah M, Sant S et al (2014) Anisotropic poly (glycerol sebacate)-poly (ϵ-caprolactone) electrospun fibers promote endothelial cell guidance. Biofabrication 7(1):015001

    Article  Google Scholar 

  120. Eslami M, Vrana NE, Zorlutuna P et al (2014) Fiber-reinforced hydrogel scaffolds for heart valve tissue engineering. J Biomater Appl 29(3):399–410

    Article  Google Scholar 

  121. Sant S, Iyer D, Gaharwar AK et al (2013) Effect of biodegradation and de novo matrix synthesis on the mechanical properties of valvular interstitial cell-seeded polyglycerol sebacate-polycaprolactone scaffolds. Acta Biomater 9(4):5963–5973

    Article  Google Scholar 

  122. Tong Z, Sant S, Khademhosseini A et al (2011) Controlling the fibroblastic differentiation of mesenchymal stem cells via the combination of fibrous scaffolds and connective tissue growth factor. Tissue Eng Part A 17(21–22):2773–2785

    Article  Google Scholar 

  123. Nisbet DR, Rodda AE, Horne MK et al (2009) Neurite infiltration and cellular response to electrospun polycaprolactone scaffolds implanted into the brain. Biomaterials 30(27):4573–4580

    Article  Google Scholar 

  124. Santerre JP, Woodhouse K, Laroche G et al (2005) Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials. Biomaterials 26(35):7457–7470

    Article  Google Scholar 

  125. Schutte RJ, Xie L, Klitzman B et al (2009) In vivo cytokine-associated responses to biomaterials. Biomaterials 30(2):160–168

    Article  Google Scholar 

  126. Zhang J-Y, Beckman EJ, Hu J et al (2002) Synthesis, biodegradability, and biocompatibility of lysine diisocyanate–glucose polymers. Tissue Eng 8(5):771–785

    Article  Google Scholar 

  127. Tressaud A, Haufe G (2008) Fluorine and health: molecular imaging, biomedical materials and pharmaceuticals. Elsevier, Amsterdam

    Google Scholar 

  128. Skóra J, Pupka A, Dorobisz A et al (2012) Evaluation of the humoral and cellular immune responses after implantation of a PTFE vascular prosthesis* Ocena immunologicznej odpowiedzi humoralnej i komórkowej po zabiegach wszczepienia protezy. Postepy Hig Med Dosw (Online) 66:469–474

    Article  Google Scholar 

  129. Gonzalez-Simon AL, Eniola-Adefeso O (2012) Host response to biomaterials engineering. In: Bhatia SK (ed) Biomaterials for regenerative medicine: , Novel technologies for clinical applications. Springer, New York, pp 143–159

    Chapter  Google Scholar 

  130. Hezi-Yamit A, Sullivan C, Wong J et al (2009) Impact of polymer hydrophilicity on biocompatibility: implication for DES polymer design. J Biomed Mater Res A 90A(1):133–141

    Article  Google Scholar 

  131. Jones JA, Chang DT, Meyerson H et al (2007) Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. J Biomed Mater Res A 83A(3):585–596

    Article  Google Scholar 

  132. Engberg AE, Rosengren-Holmberg JP, Chen H et al (2011) Blood protein-polymer adsorption: implications for understanding complement-mediated hemoincompatibility. J Biomed Mater Res A 97A(1):74–84

    Article  Google Scholar 

  133. Bota PCS, Collie AMB, Puolakkainen P et al (2010) Biomaterial topography alters healing in vivo and monocyte/macrophage activation in vitro. J Biomed Mater Res A 95A(2):649–657

    Article  Google Scholar 

  134. Cao H, McHugh K, Chew SY et al (2009) The topographical effect of electrospun nanofibrous scaffolds on the in vivo and in vitro foreign body reaction. J Biomed Mater Res A 93(3):1151–1159

    Google Scholar 

  135. Chen S, Jones JA, Xu Y et al (2010) Characterization of topographical effects on macrophage behavior in a foreign body response model. Biomaterials 31(13):3479–3491

    Article  Google Scholar 

  136. Bridges AW, Singh N, Burns KL et al (2008) Reduced acute inflammatory responses to microgel conformal coatings. Biomaterials 29(35):4605–4615

    Article  Google Scholar 

  137. Liu L, Chen G, Chao T et al (2008) Reduced foreign body reaction to implanted biomaterials by surface treatment with oriented osteopontin. J Biomater Sci Polym Ed 19(6):821–835

    Article  Google Scholar 

  138. Sant S, Poulin S, Hildgen P (2008) Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles. J Biomed Mater Res A 87A(4):885–895

    Article  Google Scholar 

  139. Wang S, Gupta AS, Sagnella S et al (2009) Biomimetic fluorocarbon surfactant polymers reduce platelet adhesion on PTFE/ePTFE surfaces. J Biomater Sci Polym Ed 20(5–6):619–635

    Article  Google Scholar 

  140. Yim EK, Leong KW (2005) Significance of synthetic nanostructures in dictating cellular response. Nanomedicine 1(1):10–21

    Google Scholar 

  141. Fink J, Fuhrmann R, Scharnweber T et al (2008) Stimulation of monocytes and macrophages: possible influence of surface roughness. Clin Hemorheol Microcirc 39(1–4):205–212

    Google Scholar 

  142. Cao H, Mchugh K, Chew SY et al (2010) The topographical effect of electrospun nanofibrous scaffolds on the in vivo and in vitro foreign body reaction. J Biomed Mater Res A 93(3):1151–1159

    Google Scholar 

  143. Geelhood SJ, Horbett TA, Ward WK et al (2007) Passivating protein coatings for implantable glucose sensors: evaluation of protein retention. J Biomed Mater Res B Appl Biomater 81(1):251–260

    Article  Google Scholar 

  144. Amiji M, Park H, Park K (1992) Study on the prevention of surface-induced platelet activation by albumin coating. J Biomater Sci Polym Ed 3(5):375–388

    Article  Google Scholar 

  145. Wisniewski N, Reichert M (2000) Methods for reducing biosensor membrane biofouling. Colloids Surf B Biointerfaces 18(3–4):197–219

    Article  Google Scholar 

  146. Kingshott P, Griesser HJ (1999) Surfaces that resist bioadhesion. Curr Opin Solid State Mater Sci 4(4):403–412

    Article  Google Scholar 

  147. Unsworth LD, Sheardown H, Brash JL (2005) Polyethylene oxide surfaces of variable chain density by chemisorption of PEO-thiol on gold: adsorption of proteins from plasma studied by radiolabelling and immunoblotting. Biomaterials 26(30):5927–5933

    Article  Google Scholar 

  148. Unsworth LD, Sheardown H, Brash JL (2008) Protein-resistant poly (ethylene oxide)-grafted surfaces: chain density-dependent multiple mechanisms of action. Langmuir 24(5):1924–1929

    Article  Google Scholar 

  149. Michel R, Pasche S, Textor M et al (2005) Influence of PEG architecture on protein adsorption and conformation. Langmuir 21(26):12327–12332

    Article  Google Scholar 

  150. Wang C, Yu B, Knudsen B et al (2008) Synthesis and performance of novel hydrogels coatings for implantable glucose sensors. Biomacromolecules 9(2):561–567

    Article  Google Scholar 

  151. Nolan CM, Reyes CD, Debord JD et al (2005) Phase transition behavior, protein adsorption, and cell adhesion resistance of poly (ethylene glycol) cross-linked microgel particles. Biomacromolecules 6(4):2032–2039

    Article  Google Scholar 

  152. Singh N, Bridges AW, García AJ et al (2007) Covalent tethering of functional microgel films onto poly (ethylene terephthalate) surfaces. Biomacromolecules 8(10):3271–3275

    Article  Google Scholar 

  153. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121

    Article  Google Scholar 

  154. Peppas NA (1986) Hydrogels in medicine and pharmacy. CRC, Boca Raton, FL

    Google Scholar 

  155. Geutjes PJ, Daamen WF, Buma P et al (2006) From molecules to matrix: construction and evaluation of molecularly defined bioscaffolds. Adv Exp Med Biol 585:279–295

    Article  Google Scholar 

  156. de Vos P, Hoogmoed CG, Busscher HJ (2002) Chemistry and biocompatibility of alginate-PLL capsules for immunoprotection of mammalian cells. J Biomed Mate Res 60(2):252–259

    Article  Google Scholar 

  157. Coutinho AE, Chapman KE (2011) The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cellular Endocrinol 335(1):2–13

    Article  Google Scholar 

  158. Spellberg B, Edwards JE (2001) Type 1/Type 2 immunity in infectious diseases. Clin Infect Dis 32(1):76–102

    Article  Google Scholar 

  159. Patil SD, Papadmitrakopoulos F, Burgess DJ (2007) Concurrent delivery of dexamethasone and VEGF for localized inflammation control and angiogenesis. J Control Release 117(1):68–79

    Article  Google Scholar 

  160. Norton LW, Koschwanez HE, Wisniewski NA et al (2007) Vascular endothelial growth factor and dexamethasone release from nonfouling sensor coatings affect the foreign body response. J Biomed Mater Res A 81A(4):858–869

    Article  Google Scholar 

  161. Galeska I, Kim T-K, Patil SD et al (2005) Controlled release of dexamethasone from PLGA microspheres embedded within polyacid-containing PVA hydrogels. AAPS J 7(1):E231–E240

    Article  Google Scholar 

  162. Norton LW, Tegnell E, Toporek SS et al (2005) In vitro characterization of vascular endothelial growth factor and dexamethasone releasing hydrogels for implantable probe coatings. Biomaterials 26(16):3285–3297

    Article  Google Scholar 

  163. Patil SD, Papadimitrakopoulos F, Burgess DJ (2004) Dexamethasone-loaded poly(lactic-co-glycolic) acid microspheres/poly(vinyl alcohol) hydrogel composite coatings for inflammation control. Diabetes Technol Ther 6(6):887–897

    Article  Google Scholar 

  164. Lopez-Armada MJ (2002) Modulation of cell recruitment by anti-inflammatory agents in antigen-induced arthritis. Ann Rheum Dis 61(11):1027–1030

    Article  Google Scholar 

  165. Hetrick EM, Prichard HL, Klitzman B et al (2007) Reduced foreign body response at nitric oxide-releasing subcutaneous implants. Biomaterials 28(31):4571–4580

    Article  Google Scholar 

  166. Barrientos S, Stojadinovic O, Golinko MS et al (2008) PERSPECTIVE ARTICLE: Growth factors and cytokines in wound healing. Wound Repair Regen 16(5):585–601

    Article  Google Scholar 

  167. Mundargi RC, Babu VR, Rangaswamy V et al (2008) Nano/micro technologies for delivering macromolecular therapeutics using poly (D, L-lactide-co-glycolide) and its derivatives. J Control Release 125(3):193–209

    Article  Google Scholar 

  168. Luten J, van Nostrum CF, De Smedt SC et al (2008) Biodegradable polymers as non-viral carriers for plasmid DNA delivery. J Control Release 126(2):97–110

    Article  Google Scholar 

  169. Rusanova A, Makarova A, Strukova S et al (2006) Thrombin receptor agonist peptide immobilized in microspheres stimulates reparative processes in rats with gastric ulcer. Bull Exp Biol Med 142(1):35–38

    Article  Google Scholar 

  170. Mori R, Shaw TJ, Martin P (2008) Molecular mechanisms linking wound inflammation and fibrosis: knockdown of osteopontin leads to rapid repair and reduced scarring. J Exp Med 205(1):43–51

    Article  Google Scholar 

  171. Kovacs JR, Zheng Y, Shen H et al (2005) Polymeric microspheres as stabilizing anchors for oligonucleotide delivery to dendritic cells. Biomaterials 26(33):6754–6761

    Article  Google Scholar 

  172. Minardi S, Corradetti B, Taraballi F et al (2016) IL-4 release from a biomimetic scaffold for the temporally controlled modulation of macrophage response. Ann Biomed Eng 44(6):2008–2019

    Article  Google Scholar 

  173. Okada T, Hayashi T, Ikada Y (1992) Degradation of collagen suture in vitro and in vivo. Biomaterials 13(7):448–454

    Article  Google Scholar 

  174. Kavoosi G, Dadfar SMM, Mohammadi Purfard A et al (2013) Antioxidant and antibacterial properties of gelatin films incorporated with carvacrol. J Food Saf 33(4):423–432

    Article  Google Scholar 

  175. Xing Q, Yates K, Vogt C et al (2014) Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal. Sci Rep 4

    Google Scholar 

  176. Yoshioka S, Stella VJ (2002) Chemical stability of drug substances. Springer, New York, pp 3–137

    Google Scholar 

  177. Kojima T, Inamura Y, Koide T et al (2005) Activity of gelatins to induce secretion of a variety of cytokines from murine peritoneal exudate macrophages. Cancer Biother Radiopharm 20(4):417–425

    Article  Google Scholar 

  178. Albanna MZ, Bou-Akl TH, Walters HL et al (2012) Improving the mechanical properties of chitosan-based heart valve scaffolds using chitosan fibers. J Mech Behav Biomed Mater 5(1):171–180

    Article  Google Scholar 

  179. Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62(1):3–11

    Article  Google Scholar 

  180. Burdick JA, Chung C, Jia X et al (2005) Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 6(1):386–391

    Article  Google Scholar 

  181. Zhang Y, Rossi F, Papa S et al (2016) Non-invasive in vitro and in vivo monitoring of degradation of fluorescently labeled hyaluronan hydrogels for tissue engineering applications. Acta Biomater 30:188–198

    Article  Google Scholar 

  182. Drury JL, Dennis RG, Mooney DJ (2004) The tensile properties of alginate hydrogels. Biomaterials 25(16):3187–3199

    Article  Google Scholar 

  183. Kong HJ, Kaigler D, Kim K et al (2004) Controlling rigidity and degradation of alginate hydrogels via molecular weight distribution. Biomacromolecules 5(5):1720–1727

    Article  Google Scholar 

  184. Koh L-D, Cheng Y, Teng C-P et al (2015) Structures, mechanical properties and applications of silk fibroin materials. Prog Polym Sci 46:86–110

    Article  Google Scholar 

  185. Leal-Egana A, Scheibel T (2010) Silk-based materials for biomedical applications. Biotechnol Appl Biochem 55(3):155–167

    Article  Google Scholar 

  186. Van de Velde K, Kiekens P (2002) Biopolymers: overview of several properties and consequences on their applications. Polym Test 21(4):433–442

    Article  Google Scholar 

  187. Liao S, Chan CK, Ramakrishna S (2008) Stem cells and biomimetic materials strategies for tissue engineering. Mater Sci Eng C 28(8):1189–1202

    Article  Google Scholar 

  188. Parks AC, Sung K, Wu BM (2014) A three-dimensional in vitro model to quantify inflammatory response to biomaterials. Acta Biomater 10(11):4742–4749

    Article  Google Scholar 

  189. de Tayrac R, Chentouf S, Garreau H et al (2008) In vitro degradation and in vivo biocompatibility of poly(lactic acid) mesh for soft tissue reinforcement in vaginal surgery. J Biomed Mater Res B Appl Biomater 85B(2):529–536

    Article  Google Scholar 

  190. Silva ATCR, Cardoso BCO, e Silva MESR et al (2015) Synthesis, characterization, and study of PLGA copolymer in vitro degradation. J Biomater Nanobiotechnol 6(01):8–19

    Article  Google Scholar 

  191. Zhang X, Yamaoka K, Sonomoto K et al (2014) Local delivery of mesenchymal stem cells with poly-lactic-co-glycolic acid nano-fiber scaffold suppress arthritis in rats. PLoS One 9(12):e114621

    Article  Google Scholar 

  192. Semete B, Booysen L, Kalombo L et al (2010) In vivo uptake and acute immune response to orally administered chitosan and PEG coated PLGA nanoparticles. Toxicol Appl Pharmacol 249(2):158–165

    Article  Google Scholar 

  193. Lam CX, Savalani MM, Teoh S-H et al (2008) Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions. Biomed Mater 3(3):034108

    Article  Google Scholar 

  194. Khandwekar AP, Patil DP, Shouche Y et al (2011) Surface engineering of polycaprolactone by biomacromolecules and their blood compatibility. J Biomater Appl 26(2):227–252

    Article  Google Scholar 

  195. McHugh KJ, Tao SL, Saint-Geniez M (2014) Porous poly (ε-caprolactone) scaffolds for retinal pigment epithelium transplantationPorous PCL Scaffolds for RPE Transplantation. Invest Ophthalmol Vis Sci 55(3):1754–1762

    Article  Google Scholar 

  196. Rae P, Brown E (2005) The properties of poly (tetrafluoroethylene)(PTFE) in tension. Polymer 46(19):8128–8140

    Article  Google Scholar 

  197. Mattana J, Effiong C, Kapasi A et al (1997) Leukocyte-polytetrafluoroethylene interaction enhances proliferation of vascular smooth muscle cells via tumor necrosis factor-α secretion. Kidney Int 52(6):1478–1485

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpa Sant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sarkar, K., Xue, Y., Sant, S. (2017). Host Response to Synthetic Versus Natural Biomaterials. In: Corradetti, B. (eds) The Immune Response to Implanted Materials and Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-45433-7_5

Download citation

Publish with us

Policies and ethics