Skip to main content

Dynamic Task Partitioning for Foraging Robot Swarms

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9882))

Abstract

Dead reckoning error is a common problem in robotics that can be caused by multiple factors related to sensors or actuators. These errors potentially cause landmarks recorded by a robot to appear in a different location with respect to the actual position of the object. In a foraging scenario with a swarm of robots, this error will ultimately lead to the robots being unable to return successfully to the food source. In order to address this issue, we propose a computationally low-cost finite state machine strategy with which robots divide the total travelling distance into a variable number of segments, thus decreasing accumulated dead-reckoning error. The distance travelled by each robot changes according to the success and failure of exploration. Our approach is more flexible than using a previously used fixed size approach for the travel distance, thus allowing swarms greater flexibility and scaling to larger areas of operation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alden, K., Read, M., Andrews, P.S., Timmis, J., Coles, M.: Applying spartan to understand parameter uncertainty in simulations. R J. 6(2), 1–18 (2014)

    Google Scholar 

  2. Barca, J.C., Sekercioglu, Y.A.: Swarm robotics reviewed. Robot. 31, 1–15 (2012)

    Google Scholar 

  3. Brutschy, A., Pini, G., Pinciroli, C., Birattari, M., Dorigo, M.: Self-organized task allocation to sequentially interdependent tasks in swarm robotics. Auton. Agents Multi-Agent Syst. 28, 101–125 (2014)

    Article  Google Scholar 

  4. Carlson, J., Murphy, R.R.: How UGVs physically fail in the field. IEEE Trans. Robot. 21(3), 423–437 (2005)

    Article  Google Scholar 

  5. Christensen, A.L., Grady, R.O., Dorigo, M.: From fireflies to fault-tolerant swarms of robots. IEEE Trans. Evol. Comput. 13(4), 754–766 (2009)

    Article  Google Scholar 

  6. Dorigo, M., Floreano, D., Gambardella, L.M., et al.: Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IRIDIA, Brussels, Belgium, Technical report 11–14 July (2011)

    Google Scholar 

  7. Ferrante, E., Turgut, A.E., Dué, E., Dorigo, M.: Evolution of self-organized task specialization in robot swarms. PLoS Comput. Biol. 11, 1–21 (2015)

    Article  Google Scholar 

  8. Goldberg, D., Matarie, M.J.: Design and evaluation of robust behavior-based controllers for distributed multi-robot collection tasks. In: Robot Teams: From Diversity to Polymorphism, pp. 1–24 (2001)

    Google Scholar 

  9. Hart, A.G., Ratnieks, F.L.W.: Task partitioning, division of labour and nest compartmentalisation collectively isolate hazardous waste in the leafcutting ant atta cephalotes. Behav. Ecol. Sociobiol. 49(5), 387–392 (2001)

    Article  Google Scholar 

  10. Humza, R., Scholz, O., Mokhtar, M., Timmis, J., Tyrrell, A.: Towards energy homeostasis in an autonomous self-reconfigurable modular robotic organism. In: Computation World: Future Computing, Service Computation, Adaptive, Content, Cognitive, Patterns, Computation World 2009, pp. 21–26 (2009)

    Google Scholar 

  11. Johnson, B.R.: Task partitioning in honey bees: the roles of signals and cues in group-level coordination of action. Behav. Ecol. 21(6), 1373–1379 (2010)

    Article  Google Scholar 

  12. Li, X., Parker, L.E.: Sensor analysis for fault detection in tightly-coupled multi-robot team tasks. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3269–3276, April 2007

    Google Scholar 

  13. Long, M., Murphy, R., Parker, L.: Distributed multi-agent diagnosis and recovery from sensor failures. In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), vol. 3, pp. 2506–2513, October 2003

    Google Scholar 

  14. Parker, L.E.: ALLIANCE: an architecture for fault tolerant multirobot cooperation. IEEE Trans. Robot. Autom. 14(2), 220–240 (1998)

    Article  Google Scholar 

  15. Parker, L.E., Kannan, B.: Adaptive causal models for fault diagnosis and recovery in multi-robot teams. In: IEEE International Conference on Intelligent Robots and Systems, pp. 2703–2710 (2006)

    Google Scholar 

  16. Pinciroli, C., Trianni, V., O’Grady et al.: ARGoS: a modular, multi-engine simulator for heterogeneous swarm robotics. In: IEEE International Conference on Intelligent Robots and Systems, pp. 5027–5034 (2011)

    Google Scholar 

  17. Pini, G., Brutschy, A., Birattari, M., Dorigo, M.: Task partitioning in swarms of robots: reducing performance losses due to interference at shared resources. In: Cetto, J.A., Filipe, J., Ferrier, J.-L. (eds.) Informatics in Control Automation and Robotics. LNEE, vol. 85, pp. 217–228. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Pini, G., Brutschy, A., Scheidler, A., et al.: Task partitioning in a robot swarm: object retrieval as sequence of subtasks with direct object transfer. Artif. Life 20(3), 291–317 (2014)

    Article  Google Scholar 

  19. Sahin, E.: Swarm robotics: from sources of inspiration. In: Swarm Robotics Workshop: State-of-the-Art Survey, pp. 10–20 (2005)

    Google Scholar 

  20. Schmickl, T., Karsai, I.: Sting, carry and stock: how corpse availability can regulate de-centralized task allocation in a ponerine ant colony. PloS one 9(12), e114611 (2014)

    Article  Google Scholar 

  21. Tarapore, D., Lima, P.U., Carneiro, J., Christensen, A.L.: To err is robotic, to tolerate immunological: fault detection in multirobot systems. Bioinspir. Biomim. 10(1), 016014 (2015)

    Article  Google Scholar 

  22. Timmis, J., Tyrrell, A., Mokhtar, M., Ismail, A., Owens, N., Bi, R.: An artificial immune system for robot organisms. In: Symbiotic Multi-Robot Organisms: Reliability, Adaptability, pp. 279–302 (2010)

    Google Scholar 

  23. Winfield, A.F.T., Harper, C.J., Nembrini, J.: Towards dependable swarms and a new discipline of swarm engineering. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342, pp. 126–142. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Acknowledgments

EB acknowledges financial support from CONACyT. JT is part sponsored by The Royal Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Buchanan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Buchanan, E., Pomfret, A., Timmis, J. (2016). Dynamic Task Partitioning for Foraging Robot Swarms. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2016. Lecture Notes in Computer Science(), vol 9882. Springer, Cham. https://doi.org/10.1007/978-3-319-44427-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44427-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44426-0

  • Online ISBN: 978-3-319-44427-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics