Skip to main content

Glutathione and Related Enzymes in Response to Abiotic Stress

  • Chapter
  • First Online:

Abstract

In variable environmental conditions, plants cannot survive without low-weight, non-enzymatic glutathione molecules. It has a role not only in plant growth and development, but also, in plant defense mechanisms. Variety of abiotic factors, such as extreme temperatures, water deficiency, high salt, and chemical pollutants, accelerate the generation of reactive oxygen species and methylglyoxal, which change glutathione redox state and, in turn, modulate gene and protein expression to increase plant acclimation to abiotic stress. Predicted climate change in future and consequently rising level of abiotic stresses will likely negatively affect plant growth and productivity worldwide. Therefore, enhancement of the functions of glutathione and its related enzymes as well as altering their levels in transgenic plants may be a useful strategy for improving the stress resistance in plants. In this chapter, we outline the key recent advances in this field of research and discuss glutathione significance in abiotic stress-exposed plants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • AbdElgawad H, Zinta G, Hegab MM, Pandey R, Asard H, Abuelsoud W (2016) High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Front Plant Sci 7:276

    PubMed  PubMed Central  Google Scholar 

  • Almeselmani M, Deshmukh PS, Sairam RK, Kushwaha SR, Singh TP (2006) Protective role of antioxidant enzymes under high temperature stress. Plant Sci 171:382–388

    Article  CAS  PubMed  Google Scholar 

  • Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M, Prasad MNV (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids—a review. Environ Exp Bot 75:307–324

    CAS  Google Scholar 

  • Anjum NA, Aref IM, Duarte AC, Pereira E, Ahmad I, Iqbal M (2014) Glutathione and proline can coordinately make plants withstand the joint attack of metal(loid) and salinity stresses. Front Plant Sci 5:662

    Article  PubMed  PubMed Central  Google Scholar 

  • Aravind P, Prasad MNV (2005) Cadmium-zinc interactions in a hydroponic system using Ceratophyllum demersum L.: adaptive ecophysiology, biochemistry and molecular toxicology. Braz J Plant Physiol 17:3–20

    Article  CAS  Google Scholar 

  • Arisi AC, Noctor G, Foyer CH, Jouanin L (1997) Modulation of the thiol contents in poplars over-express-ing enzymes involved in glutathione synthesis. Planta 202:357–359

    Article  Google Scholar 

  • Asada K (1999) The water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annl Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  Google Scholar 

  • Baek K-H, Skinner DZ (2012) Production of reactive oxygen species by freezing stress and the protective roles of antioxidant enzymes in plants. J Agric Chem Environ 1:34–40

    Google Scholar 

  • Baisak R, Rana D, Acharya PBB, Kar M (1994) Alterations in the activities of active oxygen scavenging enzymes of wheat leaves subjected to water stress. Plant Cell Physiol 35:489–495

    CAS  Google Scholar 

  • Ball L, Accotto GP, Bechtold U, Creissen G, Funck D, Jimenez A, Kular B, Leyland N, Mejia-Carranza J, Reynolds H, Karpinski S, Mullineaux PM (2004) Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16:2448–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartoli CG, Simontacchi M, Tambussi E, Beltrano J, Montaldi E, Puntarulo S (1999) Drought and watering-dependent oxidative stress: effect on antioxidant content in Triticum aestivum L. leaves. J Exp Bot 50:375–383

    Article  CAS  Google Scholar 

  • Bártová K, Hilscherová K, Babica P, Maršálek B, Bláha L (2011) Effects of microcystin and complex cyanobacterial samples on the growth and oxidative stress parameters in green alga Pseudokirchneriella subcapitata and comparison with the model oxidative stressor—herbicide paraquat. Environ Toxicol 26:641–648

    Article  PubMed  CAS  Google Scholar 

  • Bashandy T, Guilleminot J, Vernoux T, Caparros-Ruiz D, Ljung K, Meyer Y, Reichheld JP (2010) Interplay between the NADP-linked thioredoxin and glutathione systems in Arabidopsis auxin signaling. Plant Cell 22:339–376

    Article  CAS  Google Scholar 

  • Bashir K, Nagasaka S, Itai RN, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2007) Expression and enzyme activity of glutathione reductase is upregulated by Fe-deficiency in graminaceous plants. Plant Mol Biol 65:277–284

    Article  CAS  PubMed  Google Scholar 

  • Belmonte MF, Donald G, Reid DM, Yeung EC, Stasolla C (2005) Alterations of the glutathione redox state improve apical meristem structure and somatic embryo quality in white spruce (Picea glauca). J Exp Bot 56:2355–2364

    Article  CAS  PubMed  Google Scholar 

  • Boaretto LF, Carvalho G, Borgo L, Creste S, Landell MGA, Mazzafera P, Ricardo A, Azevedo RA (2014) Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugarcane genotypes. Plant Physiol Biochem 74:165–175

    Article  CAS  PubMed  Google Scholar 

  • Cetinkaya H, Tasci E, Seckin Dinler B (2014) Regulation of glutathione S-transferase enzyme activity with salt pre-treatment under heat stress in maize leaves. Res Plant Biol 4:45–56

    Google Scholar 

  • Chakraborty U, Pradhan D (2011) High temperature-induced oxidative stress in Lens culinaris, role of antioxidants and amelioration of stress by chemical pre-treatments. J Plant Interact 6:43–52

    Article  CAS  Google Scholar 

  • Chao YY, Hsu YT, Kao CH (2009) Involvement of glutathione in heat shock– and hydrogen peroxide–induced cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Soil 318:37-45

    Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384

    Article  CAS  PubMed  Google Scholar 

  • Chen KM, Gong HJ, Chen GC, Wang SM, Zhang CL (2003) Upregulation of glutathione metabolism and changes of redox status involved in adaptation of reed (Phragmites communis) ecotypes to drought-prone and saline habitats. J Plant Physiol 160:293–301

    Article  CAS  PubMed  Google Scholar 

  • Chen KM, Gong HJ, Chen GC, Wang SM, Zhang CL (2004) Gradual drought under field conditions influences the glutathione metabolism, redox balance and energy supply in spring wheat. J Plant Growth Regul 23:20–28

    Article  CAS  Google Scholar 

  • Chen JH, Jiang HW, Hsieh EJ, Chen HY, Chien CT, Hsieh HL, Lin TP (2012) Drought and salt stress tolerance of an Arabidopsis glutathione s-transferase u17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol 158:340–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng MC, Ko K, Chang WL, Kuo WC, Chen GH, Lin TP (2015) Increased glutathione contributes to stress tolerance and global translational changes in Arabidopsis. Plant J 83:926–939

    Article  CAS  PubMed  Google Scholar 

  • Chiang YJ, Wu YX, Chiang MY, Wang CY (2008) Role of antioxidative system in paraquat resistance of tall fleabane (Conyza sumatrensis). Weed Sci 56:350–355

    Article  CAS  Google Scholar 

  • Choe YH, Kim YS, Kim IS, Bae MJ, Lee EJ, Kim YH, Park HM, Yoon HS (2013) Homologous expression of γ-glutamylcysteine synthetase increases grain yield and tolerance of transgenic rice plants to environmental stresses. J Plant Physiol 170:610–618

    Article  CAS  PubMed  Google Scholar 

  • Choudhury S, Panda P, SahooL Panda SK (2013) Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav 8:4

    Google Scholar 

  • Christou A, Filippou P, Manganaris GA, Fotopoulos V (2014) Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin. BMC Plant Biol 14:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Collén J, Davison IR (2001) Seasonality and thermal acclimation of reactive oxygen metabolism in Fucus vesiculosus (Phaeophyceae). J Phycol 37:474–481

    Article  Google Scholar 

  • Colville L, Kranner I (2010) Desiccation tolerant plants as model systems to study redox regulation of protein thiols. Plant Growth Regul 62:241–255

    Article  CAS  Google Scholar 

  • Contour-Ansel D, Torres-Franklin ML, Cruz DE, Carvalho MH, D’Arcy-Lameta A, Zuily-Fodil Y (2006) Glutathione reductase in leaves of cowpea: cloning of two cDNAs, expression and enzymatic activity under progressive drought stress, desiccation and abscisic acid treatment. Ann Bot 98:1279–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cramer Grant R, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creissen G, Edwards EA, Enard C, Wellburn A, Mullineaux P (1991) Molecular characterization of glutathione reductase cDNAs from pea (Pisum sativum L.). Plant J 2:129–131

    Google Scholar 

  • Creissen GP, Broadbent P, Kular B, Reynolds H, Wellburn AR, Mullineaux PM (1994) Manipulation of glutathione reductase in transgenic plants: implications for plants’ responses to environmental stress. Proc R Soc Edinburgh, Sect B Biol Sci 102:167-175

    Google Scholar 

  • Cummins I, Cole DJ, Edwards R (1999) A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass. Plant J 18:285–292

    Article  CAS  PubMed  Google Scholar 

  • Cummins I, Wortley DJ, Sabbadin F, He Z, Coxon CR, Straker HE, Sellars JD, Knight K, Edwards L, Hughes D, Kaundun SS, Hutchings SJ, Steel PG, Edwards R (2013) Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds. Proc Nat Acad Sci U S A 110:5812–5817

    Article  CAS  Google Scholar 

  • Cuypers A, Vangronsveld J, Clijsters H (2000) Biphasic effect of copper on the ascorbate–glutathione pathway in primary leaves of Phaseolus vulgaris seedlings during the early stages of metal assimilation. Physiol Planta 110:512–517

    Article  CAS  Google Scholar 

  • Dalton DA, Boniface C, Turner Z, Lindahl A, Kim HJ, Jelinek L, Govindarajulu M, Finger RE, Taylor CG (2009) Physiological roles of glutathione S-transferases in soybean root nodules. Plant Physiol 150:521–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Swart EAM, Stam P, Voorrips RE, Marcelis LFM (2010) Influence of temperature on plant morphology traits and their relationship to relative growth rate in wild and cultivated Capsicum accessions. J Hortic Sci Biotechnol 85:177–184

    Article  Google Scholar 

  • Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228

    Article  CAS  Google Scholar 

  • Desai KM, Chang T, Wang H, Banigesh A, Dhar A, Liu J, Untereiner A, Wu L (2010) Oxidative stress and aging: is methylglyoxal the hidden enemy? Can J Physiol Pharmacol 88:273–284

    Article  CAS  PubMed  Google Scholar 

  • Dhindsa RS (1987) Glutathione status and protein synthesis during drought and subsequent rehydration in Tortula ruralis. Plant Physiol 83:816–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhindsa RS (1991) Drought stress, enzymes of glutathione metabolism, oxidation injury, and protein synthesis in Tortula ruralis. Plant Physiol 95:648–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz Vivancos P, Dong Y, Ziegler K, Markovic J, Pallardo FV, Pellny TK, Verrier PJ, Foyer CH (2010a) Recruitment of glutathione into the nucleus during cell proliferation adjusts whole-cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield. Plant J 64:825–838

    Article  CAS  Google Scholar 

  • Diaz Vivancos P, Wolff T, Markovic J, Pallardo FV, Foyer CH (2010b) A nuclear glutathione cycle within the cell cycle. Biochem J 431:169–178

    Article  CAS  PubMed  Google Scholar 

  • Dietz KJ (2011) Peroxiredoxins in plants and cyanobacteria. Antioxid Redox Signal 15:1129–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding S, Lei M, Lu Q, Zhang A, Yin Y, Wen X, Zhang L, Lu C (2012) Enhanced sensitivity and characterization of photosystem II in transgenic tobacco plants with decreased chloroplast glutathione reductase under chilling stres. Biochim Biophys Acta 1817:1979–1991

    Article  CAS  PubMed  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109

    Article  CAS  PubMed  Google Scholar 

  • Dixon DP, Skipsey M, Edwards R (2010) Roles for glutathione transferases in plant secondary metabolism. Phytochemistry 71:338–350

    Article  CAS  PubMed  Google Scholar 

  • Duke SO (1990) Overview of herbicide mechanisms of action. Environ Health Persp 87:263–271

    Article  CAS  Google Scholar 

  • Edwards R, Dixon DP, Walbot V (2000) Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trend Plant Sci 5:193–198

    Article  CAS  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 18

    Google Scholar 

  • Essemine J, Ammar S, Bouzid S (2010) Impact of heat stress on germination and growth in higher plants: physiological, biochemical and molecular repercussions and mechanisms of defence. J Biol Sci 10:565–572

    Article  CAS  Google Scholar 

  • Fatima RA, Ahmad M (2005) Certain antioxidant enzymes of Allium cepa as biomarkers for the detection of toxic heavy metals in wastewater. Sci Total Environ 346:256–273

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Fujita M, Hossain MZ (2003) Molecular cloning of cDNAs for three tau-type glutathione S-transferases in pumpkin (Cucurbita maxima) and their expression properties. Physiol Planta 117:85–92

    Article  CAS  Google Scholar 

  • Gaff DF, Oliver M (2013) The evolution of desiccation tolerance in angiosperm plants: a rare yet common phenomenon. Funct Plant Biol 40:315–328

    Article  Google Scholar 

  • Gajewska E, Skłodowska M (2008) Differential biochemical responses of wheat shoots and roots to nickel stress: antioxidative reactions and proline accumulation. Plant Growth Regul 54:179–188

    Article  CAS  Google Scholar 

  • Galant A, Preuss ML, Cameron JC, Jez JM (2011) Plant glutathione biosynthesis: diversity in biochemical regulation and reaction products. Front Plant Sci 45:1–7

    Google Scholar 

  • Galhano V, Gomes-Laranjo J, Fernández-Valiente E, Videira R, Peixoto F (2011a) Impact of herbicides on non-target organisms in sustainable irrigated rice production systems: state of knowledge and future prospects. In: Kortekamp A (ed) Herbicides and Environment. In-Tech Publishing, Rijeka

    Google Scholar 

  • Galhano V, Gomes-Laranjo J, Peixoto F (2011b) Exposure of the cyanobacterium Nostoc muscorum from Portuguese rice fields to Molinate (Ordram (®)): effects on the antioxidant system and fatty acid profile. Aquat Toxicol 101:367–376

    Article  CAS  PubMed  Google Scholar 

  • Gallé A, Csiszár J, Secenji M, Guóth A, Cseuz L, Tari I, Györgyey J, Erdei L (2009) Glutathione transferase activity and expression patterns during grain filling in flag leaves of wheat genotypes differing in drought tolerance: response to water deficit. J Plant Physiol 166:1878–1891

    Article  PubMed  CAS  Google Scholar 

  • Gapińska M, Skłodowska M, Gabara B (2008) Effect of short- and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots. Acta Physiol Plant 30:11–18

    Article  CAS  Google Scholar 

  • Garg B, Jaiswal JP, Misra S, Tripathi BN, Prasad M (2012) A comprehensive study on dehydration-induced antioxidative responses during germination of Indian bread wheat (Triticum aestivum L. em Thell) cultivars collected from different agroclimatic zones. Physiol Mol Biol Plant 18:217–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geoffroy L, Teisseire H, Couderchet M, Vernet G (2002) Effect of oxyfluorfen and diuron alone and in mixture on antioxidative enzymes of Scenedesmus obliquus. Pestic Biochem Phys 72:178–185

    Article  CAS  Google Scholar 

  • George S, Venkataraman G, Parida A (2010) A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco. J Plant Physiol 167:311–318

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Kushwaha HR, Hasan MR, Pareek A, Sopory SK, Singla-Pareek SL (2016) Presence of unique glyoxalase III proteins in plants indicates the existence of shorter route for methylglyoxal detoxification. Sci Rep 6:18358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gietler M, Nykiel M, Zagdańska BM (2016) Changes in the reduction state of ascorbate and glutathione, protein oxidation and hydrolysis leading to the development of dehydration intolerance in Triticum aestivum L. seedlings. Plant Growth 79:287–297

    Google Scholar 

  • Gigolashvili T, Kopriva S (2014) Transporters in plant sulfur metabolism. Front Plant Sci 5:442

    Article  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Pereira E, Tuteja N (2013) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem 70:204–212

    Article  CAS  PubMed  Google Scholar 

  • Grill E, Thumann J, Winnacker EL, Zenk MH (1988) Induction of heavy-metal binding phytochelatins by inoculation of cell cultures in standard media. Plant Cell Rep 7:375–378

    CAS  PubMed  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom Article ID 701596

    Google Scholar 

  • Gupta DK, Huang HG, Yang XE, Razafindrabe BHN, Inouhe M (2010) The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. J Hazard Mater 177:437–444

    Article  CAS  PubMed  Google Scholar 

  • Haghjou MM, Shariati M, Smirnoff N (2009) The effect of acute high light and low temperature stresses on the ascorbate-glutathione cycle and superoxide dismutase activity in two Dunaliella salina strains. Physiol Planta 135:272–280

    Article  CAS  Google Scholar 

  • Halusková L, Valentovicová K, Huttová J, Mistrík I, Tamás L (2009) Effect of abiotic stresses on glutathione peroxidase and glutathione S-transferase activity in barley root tips. Plant Physiol Biochem 47:1069–1074

    Article  PubMed  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Fujita M (2014) Modulation of antioxidant machinery and the methylglyoxal detoxification system in selenium-supplemented Brassica napus seedlings confers tolerance to high temperature stress. Biol Trace Elem Res 161:297–307

    Article  CAS  PubMed  Google Scholar 

  • Hatano-Iwasaki A, Ogawa K (2012) Overexpression of the GSH1 gene mimics transcriptional response to low temperature during seed vernalization treatment of Arabidopsis. Plant Cell Physiol 53:1195–1203

    Article  CAS  PubMed  Google Scholar 

  • Hatzios KK (1989) Mechanisms of action of herbicide safeners: an overview. In: Hatzios KK, Hoagland RE (eds) Crop safeners for herbicides: development, uses, and mechanisms of action. Academic Press, San Diego/London

    Google Scholar 

  • Heinrich S, Valentin K, Frickenhaus S, John U, Wiencke C (2012) Transcriptomic analysis of acclimation to temperature and light stress in Saccharina latissima (Phaeophyceae). PLoS ONE 7:e44342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herbinger K, Tausz M, Wonisch A, Soja G, Sorger A, Grill D (2002) Complex interactive effects of drought and ozone stress on the antioxidant defence systems of two wheat cultivars. Plant Physiol Biochem 40:691–696

    Article  CAS  Google Scholar 

  • Hervé C, De Franco P-O, Groisillier A, Tonon T, Boyen C (2008) New members of the glutathione transferase family discovered in red and brown algae. Biochem J 412:535–544

    Article  PubMed  Google Scholar 

  • Holzinger A, Karsten U (2013) Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological, and molecular mechanisms. Front Plant Sci 4:1–18

    Article  Google Scholar 

  • Hossain MA, Fujita M (2009) Purification of glyoxalase I from onion bulbs and molecular cloning of its cDNA. Biosci Biotechnol Biochem 73:2007–2013

    Article  CAS  PubMed  Google Scholar 

  • Hossain MZ, Hossain MD, Fujita M (2006) Induction of pumpkin glutathione S-transferases by different stresses and its possible mechanisms. Biol Plant 50:210–218

    Article  CAS  Google Scholar 

  • Hossain MA, Hossain MZ, Fujita M (2009) Stress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene. Aust J Crop Sci 3:53–64

    CAS  Google Scholar 

  • Hossain MA, Hasanuzzaman M, Fujita M (2010) Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiol Mol Biol Plant 16:259–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain MA, Piyatida P, Teixeira da Silva JA, Masayuki Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot Article ID 872875

    Google Scholar 

  • Hossain MA, Mostofa MG, Burritt DJ, Fujita M (2014) Modulation of reactive oxygen species and methylglyoxal detoxification systems by exogenous glycinebetaine and proline improves drought tolerance in mustard (Brassica juncea L.). Int J Plant Biol Res 2:1014

    Google Scholar 

  • Hu Y, Ge Y, Zhang C, Ju T, Cheng W (2009) Cadmium toxicity and translocation in rice seedlings are reduced by hydrogen peroxide pretreatment. Plant Growth Regul 59:51–61

    Article  CAS  Google Scholar 

  • Hu X, Liu R, Li Y, Wang W, Tai F, Xue R, Li C (2010) Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress. Plant Growth Regul 60:225–235

    Article  CAS  Google Scholar 

  • Innocenti G, Pucciariello C, Le Gleuher M, Hopkins J, de Stefano M, Delledonne M, Puppo A, Baudouin E, Frendo P (2007) Glutathione synthesis is regulated by nitric oxide in Medicago truncatula roots. Planta 225:1597–1602

    Article  CAS  PubMed  Google Scholar 

  • Inouhe M (2005) Phytochelatins. Braz J Plant Physiol 17:65–78

    Google Scholar 

  • Janda T, Szalai G, Rios-Gonzalez K, Veisz O, Páldi E (2002) Correlation between frost tolerance and antioxidant activities in cereals. Acta Biol Szeged 46:67–69

    Google Scholar 

  • Jha UC, Bohra A, Singh NP (2014) Heat stress in crop plants: its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breed 133:679–701

    Article  Google Scholar 

  • Ji W, Zhu Y, Li Y, Yang L, Zhao X, Cai H, Bai X (2010) Over-expression of a glutathione S-transferase gene, GsGST, fromwild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnol Lett 32:1173–1179

    Article  CAS  PubMed  Google Scholar 

  • Jouyban Z, Hasanzade R, Sharafi S (2013) Chilling stress in plants. Int J Agri Crop Sci 5:2961–2968

    Google Scholar 

  • Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defences. Int J Mol Sci 13:3145–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jozefczak M, Keunen E, Schat H, Bliek M, Hernández LE, Carleer R, Remans T, Bohler S, Vangronsveld J, Cuypers A (2014) Differential response of Arabidopsis leaves and roots to cadmium: glutathione-related chelating capacity vs antioxidant capacity. Plant Physiol Biochem 83:1–9

    Article  CAS  PubMed  Google Scholar 

  • Kaminaka H, Morita S, Nakajima M, Masumura T, Tanaka K (1998) Gene cloning and expression of cytosolic glutathione reductase in rice (Oryza sativa L.). Plant Cell Physiol 39:1269–1280

    Article  CAS  Google Scholar 

  • Kapoor D, Sharma R, Handa N, Kaur H, Rattan A, Yadav P, Gautam V, Kaur R, Bhardwaj R (2015) Redox homeostasis in plants under abiotic stress: role of electron carriers, energy metabolism mediators and proteinaceous thiols. Front Environ Sci 3:13

    Article  Google Scholar 

  • Katerova ZI, Miteva LPE (2010) Glutathione and herbicide resistance in plants. In: Anjum NA, Umar S, Chan MT (eds) Ascorbate-glutathione pathway and stress tolerance in plants. Springer, Berlin

    Google Scholar 

  • Kaur C, Ghosh A, Pareek A, Sopory SK, Singla-Pareek SL (2014) Glyoxalases and stress tolerance in plants. Biochem Soc Trans 42:485–490

    Article  CAS  PubMed  Google Scholar 

  • Kawahigashi H (2009) Transgenic plants for phytoremediation of herbicides. Curr Opin Biotechnol 20:225–230

    Article  CAS  PubMed  Google Scholar 

  • Keles Y, Oncel I (2002) Response of the antioxidant defense system to temperature and water stress combinations in wheat seedling. Plant Sci 163:783–790

    Article  CAS  Google Scholar 

  • Kocsy G, Szalai G, Vágújfalvi A, Stéhli L, Orosz G, Galiba G (2000) Genetic study of glutathione accumulation during cold hardening in wheat. Planta 210:295–301

    Article  CAS  PubMed  Google Scholar 

  • Kocsy G, von Ballmoos P, Rüegsegger A, Szalai G, Gábor G, Brunold C (2001) Increasing the glutathione content in a chilling-sensitive maize genotype using safeners increased protection against chilling-induced injury. Plant Physiol 127:1147–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kranner I, Zorn M, Turk B, Wornik S, Beckett RP, Batic F (2003) Biochemical traits of lichens differing in relative desiccation tolerance. New Phytol 160:167–176

    Article  CAS  Google Scholar 

  • Kuk YI, Shin JS (2007) Mechanisms of low-temperature tolerance in cucumber leaves of various ages. J Amer Soc Hort Sci 132:294–301

    Google Scholar 

  • Kuk YI, Shin JS, Burgos NR, Hwang TE, Han O, Cho BH, Jung S, Guh JO (2003) Antioxidative enzymes offer protection from chilling damage in rice plants. Crop Sci 3:2109–2117

    Article  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695

    CAS  Google Scholar 

  • Lascano HR, Antonicelli GE, Luna CM, Melchiorre MN, Gomez LD, Racca RW, Trippi VS, Casano LM (2001) Antioxidant system response of different wheat cultivars under drought: field and in vitro studies. Aust J Plant Physiol 28:1095–1102

    CAS  Google Scholar 

  • Lei L, Shan-zhi L, Hui-quan Z, Yang L, Qian Z, Zhi-yi Z (2007) The role of antioxidant system in freezing acclimation-induced freezing resistance of Populus suaveolens cuttings. For Stud China 9:107–113

    Article  CAS  Google Scholar 

  • Li S, Zhang G, Gao W, Zhao X, Deng C, Lu L (2015) Plant growth, developmen and change in GSH level in safflower (Carthamus tinctorius L.) exposed to copper and lead. Arch Biol Sci Belgrade 67:385–396

    Article  Google Scholar 

  • Liu ZJ, Zhang XL, Bai J-G, Suo BX, Xu PL, Wang L (2009) Exogenous paraquat changes antioxidant enzyme activities and lipid peroxidation in drought-stressed cucumber leaves. Sci Hort 121:138–143

    Article  CAS  Google Scholar 

  • Liu D, An Z, Mao Z, Ma L, Lu Z (2015) Enhanced heavy metal tolerance and accumulation by transgenic sugar beets expressing Streptococcus thermophilus StGCS-GS in the presence of Cd, Zn and Cu alone or in combination. PLoS ONE 10:e0128824

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loggini B, Scartazza A, Brugnoli E, Navari-Izzo F (1999) Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiol 119:1091–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukatkin AS, Anjum NA (2014) Control of cucumber (Cucumis sativus L.) tolerance to chilling stress evaluating the role of ascorbic acid and glutathione. Front Environ Sci 2:62

    Article  Google Scholar 

  • Mahmood Q, Ahmad R, Kwak S-S, Rashid A, Anjum NA (2010) Ascorbate and glutathione: protectors of plants in oxidative stress. In: Anjum NA, Umar S, Cha MT (eds) Ascorbate-glutathione pathway and stress tolerance in plants. Springer, Berlin

    Google Scholar 

  • Marrs KA (1996) The function and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158

    Article  CAS  PubMed  Google Scholar 

  • Marrs KA, Walbot V (1997) Expression and RNA splicing of the maize glutathione S-transferase Bronze2 gene is regulated by cadmium and other stresses. Plant Physiol 113:93–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masoumi H, Masoumi M, Darvish F, Daneshian J, Nourmohammadi G, Habibi D (2010) Change in several antioxidant enzymes activity and seed yield by water deficit stress in soybean (Glycine max L.) cultivars. Bot Hort Agrobot Cluj 38:86–94

    CAS  Google Scholar 

  • Mendoza-Cózatl DG, Moreno-Sánchez R (2006) Control of glutathione and phytochelatin synthesis under cadmium stress. Pathway modeling for plants. J Theor Biol 238:919–936

    Article  PubMed  CAS  Google Scholar 

  • Mendoza-Cózatl D, Loza-Tavera H, Hernández-Navarro A, Moreno-Sánchez R (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev 29:653–671

    Article  PubMed  CAS  Google Scholar 

  • Mhamdi A, Hager J, Chaouch S, Queval G, Han Y, Taconnat L, Saindrenan P, Gouia H, Issakidis-Bourguet E, Renou J-P, Noctor G (2010) Arabidopsis glutathione reductase 1 plays a crucial role in leaf responses to intracellular H2O2 and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiol 153:1144–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao Y, Lv D, Wang P, Wang XC, Chen J, Miao C, Song CP (2006) An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 18:2749–2766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell Environ 33:453–467

    Article  CAS  Google Scholar 

  • Miteva LPE, Ivanov SV, Alexieva VS, Karanov EN (2004) Effect of atrazine on glutathione levels, glutathione S-transferase and glutathione reductase activities in pea and wheat plants. Plant Protect Sci 40:16–20

    Google Scholar 

  • Mostofa MG, Seraj ZI, Fujita M (2015) Interactive effects of nitric oxide and glutathione in mitigating copper toxicity of rice (Oryza sativa L.) seedlings. Plant Signal Behav 10:3

    Google Scholar 

  • Mukherjee SP, Choudhuri MA (1983) Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58:166–170

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annl Rev Plant Bio 59:651–681

    Article  CAS  Google Scholar 

  • Myrene RD, Devaraj VR (2013) Induction of thermotolerance through heat acclimation in lablab bean (Dolichos lablab). Afr J Biotechnol 12:5695–5704

    Article  CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TMV (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Nagalakshmi N, Prasad MNV (2001) Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci 160:291–299

    Article  CAS  PubMed  Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM, Fujita M (2015a) Glutathione-induced drought stress tolerance in mung bean: coordinated roles of the antioxidant defence and methylglyoxal detoxification systems. AoB Plants 7:plv069

    Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM, Fujita M (2015b) Roles of exogenous glutathione in antioxidant defense system and methylglyoxal detoxification during salt stress in mung bean. Biol Plant 59:745–756

    Article  CAS  Google Scholar 

  • Navari-Izzo F, Meneguzzo S, Loggini B, Vazzana C, Sgherri CLM (1997) The role of glutathione system during dehydration and rehydration of Boea hygroscopica. Physiol Plant 99:25–30

    Article  Google Scholar 

  • Nemat Alla MM, Badawi AM, Hassan NM, El-Bastawisy ZM, Badran EG (2007) Induction of glutathione and glutathione-associated enzymes in butachlor-tolerant plant species. Amer J Plant Physiol 2:195–205

    Article  Google Scholar 

  • Nemat Alla MM, Badawi AM, Hassan NM, El-Bastawisy ZM, Badran EG (2008) Effect of metribuzin, butachlor and chlorimuron-ethyl on amino acid and protein formation in wheat and maize seedlings. Pest Biochem Physiol 90:8–18

    Article  CAS  Google Scholar 

  • Nocito FF, Pirovano L, Cocucci M, Sacchi GA (2002) Cadmium-induced sulfate uptake in maize roots. Plant Physiol 129:1872–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nocito FF, Lancilli C, Crema B, Fourcroy P, Davidian JC, Sacchi GA (2006) Heavy metal stress and sulfate uptake in maize roots. Plant Physiol 141:1138–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annl Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Noctor G, Strohm M, Jouanin L, Kunert KJ, Foyer CH, Rennenberg H (1996) Synthesis of glutathione in leaves of transgenic poplar over-expressing γ-glutamylcysteine syn-thetase. Plant Physiol 112:1071–1078

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002a) Interactions between biosynthesis, compartmentation and transport in the control of the glutathione homeostasis and signaling. J Exp Bot 53:1283–1304

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitskaya L, Foyer CH (2002b) Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Ann Bot 89:841–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant, Cell Environ 35:454–484

    Article  CAS  Google Scholar 

  • Nouairi I, Ben Ammar W, Ben Youssef N, Ben Miled DD, Ghorbal MH, Zarrouk M (2009) Antioxidant defense system in leaves of Indian mustard (Brassica juncea) and rape (Brassica napus) under cadmium stress. Acta Physiol Plant 31:237–247

    Article  CAS  Google Scholar 

  • Ogawa K, Hatano-Iwasaki A, Yanagida M, Iwabuchi M (2004) Level of glutathione is regulated by ATP-dependent ligation of glutamate and cysteine through photosynthesis in Arabidopsis thaliana: mechanism of strong interaction of light intensity with flowering. Plant Cell Physiol 45:1–8

    Article  CAS  PubMed  Google Scholar 

  • Oliver MJ, Bewley J (1997) Desiccation tolerance of plant tissues: a mechanistic overview. Hortic Rev 18:171–214

    Google Scholar 

  • Ort DR, Oxborough K, Wise RR (1994) Depressions of photosynthesis in crops with water deficits. In: Baker NR, Bowyer JR (eds) Photoinhibition of photosynthesis from molecular mechanisms to the field. Bios Scientific, Oxford, pp 315–329

    Google Scholar 

  • Owen MJ, Martinez NJ, Powles SB (2015) Multiple herbicide-resistant wild radish (Raphanus raphanistrum) populations dominate Western Australian cropping fields. Crop Pasture Sci 66:1079–1085

    Article  CAS  Google Scholar 

  • Palma JM, Jiménez A, Sandalio LM, Corpas FJ, Lundqvist M, Gómez M, Sevilla F, del Río LA (2006) Antioxidative enzymes from chloroplasts, mitochondria, and peroxisomes during leaf senescence of nodulated pea plants. J Exp Bot 57:1747–1758

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Priya S, Yaqoob U, Kumari T, Malik M, Yadav A, Kaul T (2015) Introduction and mechanism glutathione reductase in plant stress tolerance. J Env Appl Biores 3:113–119

    Google Scholar 

  • Pang S, Duan L, Liu Z, Song X, Li X, Wang C (2012) Co-induction of a glutathione-S-transferase, a glutathione transporter and an ABC transporter in maize by xenobiotics. PLoS ONE 7:e40712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parvanova D, Ivanov S, Konstantinova T, Karanov E, Atanassov A, Tsvetkov T, Alexieva V, Djilianov D (2004) Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiol Biochem 42:57–63

    Article  CAS  PubMed  Google Scholar 

  • Pastori GM, Trippi VS (1993) Cross resistance between water and oxidative stresses in wheat leaves. J Agric Sci 120:289–294

    Article  CAS  Google Scholar 

  • Pourtaghi A, Darvish F, Habibi D, Nourmohammadi G, Daneshian J (2011) Effect of irrigation water deficit on antioxidant activity and yield of some sunflower hybrids. Aust J Crop Sci 5:197–204

    CAS  Google Scholar 

  • Pulido P, Spínola MC, Kirchsteiger K, Guinea M, Pascual MB, Sahrawy M, Sandalio LM, Dietz KJ, González M, Cejudo FJ (2010) Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts. J Exp Bot 61:4043–4054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Queval G, Jaillard D, Zechmann B, Noctor G (2011) Increased intracellular H2O2 availability preferentially drives glutathione accumulation in vacuoles and chloroplasts. Plant, Cell Environ 34:21–32

    Article  CAS  Google Scholar 

  • Rahman MdM, Mian MAK, Ahmed A, Rohman MdM (2015) Roles of glutathione S-transferease in maize (Zea mays L.) under cold stress. Res Agric Livest Fish 2:9–15

    Article  Google Scholar 

  • Rao VS (2014) Transgenic herbicide resistance in plants. CRC Press, New York, pp 301–302

    Google Scholar 

  • Ratnayaka HH, Molin WT, Sterling TM (2003) Physiological and antioxidant response of cotton and spurred anoda under interference and mild drought. J Exp Bot 54:2293–2305

    Article  CAS  PubMed  Google Scholar 

  • Rivero RM, Ruiz JM, García PC, López-Lefebre LR, Sánchez E, Romero L (2002) Response of oxidative metabolism in watermelon plants subjected to cold stress. Funct Plant Biol 29:643–648

    Article  CAS  Google Scholar 

  • Rivero RM, Ruiz JM, Romero L (2004) Oxidative metabolism in tomato plants subjected to heat stress. J Hortic Sci Biotechnol 79:560–564

    Article  CAS  Google Scholar 

  • Rodríguez M, Canales E, Borrás-Hidalgo O (2005) Molecular aspects of abiotic stress in plants. Biotechnol Appl 22:1–10

    Google Scholar 

  • Rodríguez VM, Soengas P, Alonso-Villaverde V, Sotelo T, Cartea ME, Velasco P (2015) Effect of temperature stress on the early vegetative development of Brassica oleracea L. BMC Plant Biol 15:145

    Article  PubMed  PubMed Central  Google Scholar 

  • Rouhier N, Jacquot JP (2002) Plant peroxiredoxins: alternative hydroperoxide scavenging enzymes. Photosyn Res 74:259–268

    Article  CAS  PubMed  Google Scholar 

  • Roxas VP, Smith RK Jr, Allen ER, Allen RD (1997) Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedling during stress. Nat Biotech 25:988–991

    Article  Google Scholar 

  • Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione s-transferase/glutathione peroxidase. Plant Cell Physiol 41:1229–1234

    Article  CAS  PubMed  Google Scholar 

  • Sangwan V, Orvar BL, Beyerly J, Hirt H, Dhindsa RS (2002) Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant J 31:629–638

    Article  CAS  PubMed  Google Scholar 

  • Sayfzadeh S, Rashidi M (2011) Response of antioxidant enzymes activities of sugar beet to drought stress. J Agric Biol Sci 6:27–33

    Google Scholar 

  • Scarponi L, Del Buono D (2005) Benoxacor induction of terbuthylazine detoxification in Zea mays and Festuca arundinacea. J Agric Food Chem 53:2483–2488

    Article  CAS  PubMed  Google Scholar 

  • Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Res Inst ESR Facil 30:1191–1212

    CAS  Google Scholar 

  • Schnaubelt D, Schulz P, Hannah MA, Yocgo RE, Foyer CH (2013) A phenomics approach to the analysis of the influence of glutathione on leaf area and abiotic stress tolerance in Arabidopsis thaliana. Front Plant Sci 4:416

    Article  PubMed  PubMed Central  Google Scholar 

  • Semane B, Cuypers A, Smeets K, van Belleghem F, Horemans N, Schat H, Vangronsveld J (2007) Cadmium responses in Arabidopsis thaliana: glutathione metabolism and antioxidative defence system. Physiol Planta 129:519–528

    Article  CAS  Google Scholar 

  • Seppänen MM, Coleman GD (2003) Characterization of genotypic variation in stress gene expression and photosynthetic parameters in potato. Plant, Cell Environ 26:401–410

    Article  Google Scholar 

  • Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activity of antioxidant enzymes in growing rice seedling. Plant Growth Regul 46:209–221

    Article  CAS  Google Scholar 

  • Shin SY, Kim IS, Kim YS, Lee H, Yoon HS (2013) Ectopic expression of Brassica rapa L. MDHAR increased tolerance to freezing stress by enhancing antioxidant systems of host plants. S Afr J Bot 88:388–400

    Article  CAS  Google Scholar 

  • Siddiqui MH, Al-Khaishany MY, Al-Qutami MA, Al-Whaibi MH, Grover A, Ali HM, Al-Wahibi MS (2015) Morphological and physiological characterization of different genotypes of faba bean under heat stress. Saudi J Biol Sci 22:656–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Signorelli S, Corpas FJ, Borsani O, Barroso JB, Monza J (2013) Water stress induces a differential and spatially distributed nitro-oxidative stress response in roots and leaves of Lotus japonicus. Plant Sci 201:137–146

    Article  PubMed  CAS  Google Scholar 

  • Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2006) Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol 140:613–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  • Sobrino-Plata J, Ortega-Villasante C, Laura Flores-Cáceres M, Escobar C, Del Campo FF, Hernández LE (2009) Differential alterations of antioxidant defenses as bioindicators of mercury and cadmium toxicity in alfalfa. Chemosphere 77:946–954

    Article  CAS  PubMed  Google Scholar 

  • Sobrino-Plata J, Meyssen D, Cuypers A, Escobar C, Hernández LE (2014) Glutathione is a key antioxidant metabolite to cope with mercury and cadmium stress. Plant Soil 377:369–381

    Article  CAS  Google Scholar 

  • Song L, Jiang Y, Zhao H, Hou M (2012) Acquired thermotolerance in plants. Plant Cell Tiss Organ Cult 111:265–276

    Article  CAS  Google Scholar 

  • Špoljarić D, Čipak A, Horvatić J, Andrišić L, Waeg G, Žarković N, Jaganjac M (2011) Endogenous 4-hydroxy-2-nonenal in microalga Chlorella kessleri acts as a bioactive indicator of pollution with common herbicides and growth regulating factor of hormesis. Aquat Toxicol 105:552–558

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Tripathi RD, Dwivedi UN (2004) Synthesis of phytochelatins and modulation of antioxidants in response to cadmium stress in Cuscuta reflexa—an angiospermic parasite. J Plant Physiol 161:665–674

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Srivastava AK, Suprasanna P, D’souza SF (2010) Comparative antioxidant profiling of tolerant and sensitive varieties of Brassica juncea L. to arsenate and arsenite exposure. Bull Environ Contam Toxicol 84:342–346

    Article  CAS  PubMed  Google Scholar 

  • Štolfa I, Žuna Pfeiffer T, Špoljarić D, Teklić T, Lončarić Z (2015) Heavy metal-induced oxidative stress in plants: response of the antioxidative system. In: Gupta DK, Palma JM, Corpas FJ (eds) Reactive oxygen species and oxidative damage in plants under stress. Springer, Berlin

    Google Scholar 

  • Strohm M, Jouanin L, Kunert KJ, Pruvost C, Polle A, Foyer CH, Rennenburg H (1995) Regulation of glutathione synthesis in leaves of transgenic poplar overexpressing glutathione synthetase. Plant J 7:141–145

    Article  CAS  Google Scholar 

  • Sun Q, Ye ZH, Wang XR, Wong MH (2007) Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii. J Plant Physiol 164:1489–1498

    Article  CAS  PubMed  Google Scholar 

  • Takesawa T, Ito M, Kanzaki H, Kameya N, Nakamura I (2002) Over-expression of glutathione S-transferase in transgenic rice enhances germination and growth at low temperature. Mol Breed 9:93–101

    Article  CAS  Google Scholar 

  • Talukder ASMHM, McDonald GK, Gill GS (2014) Effect of short-term heat stress prior to flowering and early grain set on the grain yield of wheat. Field Crops Res 160:54–63

    Article  Google Scholar 

  • Tambussi EA, Casadesus J, Munné-Bosch S, Araus JL (2002) Photoprotection in water-stressed plants of durum wheat (Triticum turgidum var. durum): changes in chlorophyll fluorescence, spectral signature and photosynthetic pigments. Funct Plant Biol 29:35–44

    Article  CAS  Google Scholar 

  • Tang J, Siegfried BD, Hoagland KD (1998) Glutathione-S-transferase and in vitro metabolism of atrazine in freshwater algae. Pest Biochem Physiol 59:155–161

    Article  CAS  Google Scholar 

  • Tausz M, Sircelj H, Grill D (2004) The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J Exp Bot 55:1955–1962

    Article  CAS  PubMed  Google Scholar 

  • Taylor VL, Cummins I, Brazier-Hicks M, Edwards R (2013) Protective responses induced by herbicide safeners in wheat. Environ Exp Bot 88:93–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakkar M, Randhawa V, Wei L (2013) Comparative responses of two species of marine phytoplankton to metolachlor exposure. Aquat Toxicol 126:198–206

    Article  CAS  PubMed  Google Scholar 

  • Theocharis A, Clément CEA (2012) Physiological and molecular changes in plants grown at low temperatures. Planta 235:1091–1105

    Article  CAS  PubMed  Google Scholar 

  • Torres-Franklin ML, Gigon A, Fernandes de Melo D, Zuily-Fodil Y, PhamThi AT (2007) Drought stress and rehydration affect the balance between MGDG and DGDG synthesis in cowpea leaves. Physiol Plant 131:201–210

    CAS  PubMed  Google Scholar 

  • Tuomainen M, Ahonen V, Karenlampi SO, Schat H, Paasela T, Svanys A, Tuohimetsä S, Peräniemi S, Tervahauta A (2011) Characterization of the glyoxalase 1 gene TcGLX1 in the metal hyperaccumulator plant Thlaspi caerulescens. Planta 233:1173–1184

    Article  CAS  PubMed  Google Scholar 

  • Tyburski J, Tretyn A (2010) Ascorbate and glutathione in organogenesis, regeneration and differentiation in plant in vitro cultures. In: Anjum NA, Umar S, Chan MT (eds) Ascorbate-glutathione pathway and stress tolerance in plants. Springer, Berlin

    Google Scholar 

  • Van Kiet H, Nose A (2015) Effects of temperature on growth and photosynthesis in the seedling stage of the sheath blight-resistant rice genotype 32R. Plant Prod Sci 19:248–256

    Google Scholar 

  • Vernoux T, Wilson RC, Seeley KA, Reichheld JP, Muroy S, Brown S, Maughan SC, Cobbett CS, Van Montagu M, Inzé D, May MJ, Sung ZR (2000) The root meristemless1/cadmium sensitive 2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12:97–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vestena S, Cambraia J, Ribeiro C, Oliveira JA, Oliva MA (2011) Cadmium-induced oxidative stress and antioxidative enzyme response in water hyacinth and salvinia. Braz J Plant Physiol 23:131–139

    Article  CAS  Google Scholar 

  • Viswanathan C, Jianhua Z, Jian-Kang Z (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    Article  CAS  Google Scholar 

  • Wang SH, Zang H, Zhang Q, Jin GM, Jiang SJ, Jiang D, He QY, Li ZP (2011) Copper-induced oxidative stress and responses of the antioxidant system in roots of Medicago sativa. J Agron Crop Sci 197:418–429

    Article  CAS  Google Scholar 

  • Wang C, Wen D, Sun A, Han X, Zhang J, Wang Z, Yin Y (2014) Differential activity and expression of antioxidant enzymes and alteration in osmolyte accumulation under high temperature stress in wheat seedlings. J Cereal Sci 60:653–659

    Article  CAS  Google Scholar 

  • Waraich EA, Ahmad R, Halim A, Aziz T (2012) Alleviation of temperature stress by nutrient management in crop plants: a review. J Soil Sci Plant Nutr 12:221–244

    Article  Google Scholar 

  • Waśkiewicz A, Gładysz O, Szentner K, Goliński P (2014) Role of glutathione in abiotic stress tolerance. In: Ahmad P (ed) Oxidative damage to plants: antioxidant networks and signaling. Academic Press, Elsevier, New York

    Google Scholar 

  • Wei L, Wang L, Yang Y, Wang P, Guo T, Kang G (2015) Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels of genes encoding ascorbate-glutathione biosynthesis. Front Plant Sci 6:458

    PubMed  PubMed Central  Google Scholar 

  • Wójcik M, Tukiendorf A (2011) Glutathione in adaptation of Arabidopsis thaliana to cadmium stress. Biol Plant 55:125–132

    Article  CAS  Google Scholar 

  • Xu S, Li JL, Zhang XQ, Wei H, Cui LJ (2006) Effect of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplast in two cool-season turfgrass species under heat stress. Environ Exp Bot 56:274–285

    Article  CAS  Google Scholar 

  • Xu J, Xing XJ, Tian YS, Peng RH, Xue Y, Zhao W, Yao QH (2015) Transgenic Arabidopsis plants expressing tomato glutathione s-transferase showed enhanced resistance to salt and drought stress. PLoS ONE 10:e0136960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    Article  CAS  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Ray M, Reddy MK, Sopory SK (2005a) Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem Biophys Res Commun 337:61–67

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Reddy MK, Sopory SK (2005b) Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Lett 579:6265–6271

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Sopory SK (2008) An overview on the role of methylglyoxal and glyoxalases in plants. Drug Metabol Drug Interact 23:51–68

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Wang Y, Xia D, Gao C, Wang C, Yang C (2014) Overexpression of a GST gene (ThGSTZ1) from Tamarix hispida improves drought and salinity tolerance by enhancing the ability to scavenge reactive oxygen species. Plant Cell Tiss Organ Cult 117:99–112

    Article  CAS  Google Scholar 

  • Yang G, Xu Z, Peng S, Sun Y, Jia C, Zhai M (2016) In planta characterization of a tau class glutathione S-transferase gene from Juglans regia (JrGSTTau1) involved in chilling tolerance. Plant Cell Rep 35:681–692

    Article  CAS  PubMed  Google Scholar 

  • Yannarelli GG, Fernández-Álvarez AJ, Santa-Cruz DM, Tomaro ML (2007) Glutathione reductase activity and isoforms in leaves and roots of wheat plants subjected to cadmium stress. Phytochemistry 68:505–512

    Article  CAS  PubMed  Google Scholar 

  • Yılmaz C, İşcan M (2014) Glutathione S-transferase activities and glutathione levels in needles of drought stressed Pinus Brutia Ten. trees. Turk J Biochem 39:238–243

    Article  CAS  Google Scholar 

  • Yoshida S, Tamaoki M, Ioki M, Ogawa D, Sato Y, Aono M, Kubo A, Saji S, Saji H, Satoh S, Nakajima N (2009) Ethylene and salicylic acid control glutathione biosynthesis in ozone-exposed Arabidopsis thaliana. Physiol Plant 136:284–298

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Powles S (2014) Metabolism-based herbicide resistance and cross-resistance in crop weeds: a threat to herbicide sustainability and global crop production. Plant Physiol 166:1106–1118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu CW, Murphy TM, Lin CH (2003a) Hydrogen peroxide-induced chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. Funct Plant Biol 30:955–963

    Article  CAS  Google Scholar 

  • Yu T, Li YS, Chen XF, Hu J, Chang X, Zhu YG (2003b) Transgenic tobacco plants overexpressing cotton glutathione S-transferase (GST) show enhanced resistance to methyl viologen. J Plant Physiol 160:1305–1311

    Article  CAS  PubMed  Google Scholar 

  • Zechmann B, Koffler BE, Russel SD (2011) Glutathione synthesis is essential for pollen germination in vitro. BMC Plant Biol 11:54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao LX, Liu CG, Fu Y, Xing ZY, Ye F, Gao S (2012) Induction of maize glutathione S-transferase by herbicide safener and their effect on enzyme activity against chlorsulfuron. Adv Mat Res 518–523:5480–5483

    Article  CAS  Google Scholar 

  • Zhou ZS, Wang SJ, Yang ZM (2008) Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants. Chemosphere 70:1500–1509

    Article  CAS  PubMed  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Jouanin L, Terry N (1999) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–79

    Article  CAS  Google Scholar 

  • Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61:1959–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Štolfa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Štolfa, I., Špoljarić Maronić, D., Žuna Pfeiffer, T., Lončarić, Z. (2016). Glutathione and Related Enzymes in Response to Abiotic Stress. In: Gupta, D., Palma, J., Corpas, F. (eds) Redox State as a Central Regulator of Plant-Cell Stress Responses. Springer, Cham. https://doi.org/10.1007/978-3-319-44081-1_9

Download citation

Publish with us

Policies and ethics