Skip to main content

Biogeochemistry in the Scales

  • Chapter
  • First Online:

Abstract

Global environmental change is challenging our understanding of how communities as a whole interact with their physical environment. Ideally, we would model the impacts of global environmental change at a global level. However, in order to mathematically model the sheer functional diversity of Earth’s dynamic ecosystems, we need to integrate the scales at which these processes operate. Traditionally, studies of ecosystem function have focused on singular ecological, evolutionary or biogeochemical process within an environment. Such studies have contributed much more to the development of our understanding of ecosystem function than those focused on the interactions between biotic and abiotic factors. Ultimately, the productivity of most ecosystems is controlled by the concentration, molecular form and stoichiometry of the macronutrients thereby highlighting the importance of biogeochemical modelling for dynamic ecosystem models across molecular, habitat, landscape and global scales. But as we face unprecedented rates of habitat degradation and species extinctions, few traditional theories can predict in detail how ecosystems will respond to perturbations such as environmental disturbance or shifting weather patterns. To be both statistically and ecologically informative, future ecosystem and biogeochemical models must address complex interactions from atoms to ecosystems. Unless ecological processes are modelled explicitly, significant feedbacks, thresholds and constraints will be missed. The aim of this chapter is to review the state of the art in the use of such models, and suggest new approaches for ecologists, biogeochemists and mathematicians to work together to model the inputs and outputs of entire ecosystems rather than as a series of individual interactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen JJ, Fulton EA (2010) Top-down, bottom-up or middle-out? Avoiding extraneous detail and over-generality in marine ecosystem models. Progr Oceanogr 84:129–133

    Article  Google Scholar 

  • Aster R (2011) Parameter estimation and inverse problems. Academic, Waltham

    Google Scholar 

  • Astrom KJ (2006) Introduction to stochastic control theory. Dover, New York

    Google Scholar 

  • Baisden WT, Amundson R (2003) An analytical approach to ecosystem biogeochemistry modelling. Ecol Appl 13:649–663

    Article  Google Scholar 

  • Bengtsson J (1989) Interspecific competition increases local extinction rate in a metapopulation system. Nature 340:713–715

    Article  Google Scholar 

  • Benton TG, Solan M, Travis JMJ, Sait SM (2007) Micocosm experiments can inform global ecological problems. Trends Ecol Evol 22:516–521

    Article  Google Scholar 

  • Carpenter SR (1996) Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology 77:677–680

    Article  Google Scholar 

  • Coleman K, Jenkinson DS, Crocker GJ et al (1997) Simulating trends in soil organic carbon in long-term experiments using RothC-26.3. Geoderma 81:29–44

    Article  Google Scholar 

  • Cooper SD, Barmuta LA (1993) Field experiments in biomonitoring. In: Rosenberg DM, Resh VH (eds) Freshwater biomonitoring and Benthic macroinvertebrates. Chapman & Hall, New York, pp 399–441

    Google Scholar 

  • Creutzig F, Popp A, Plevin R, Luderer G, Minx J, Edenhofer O (2012) Reconciling top-down and bottom-up modelling on future bioenergy deployment. Nat Clim Change 2:320–327

    Article  Google Scholar 

  • Duffy JE (2003) Biodiversity loss, trophic skew and ecosystem functioning. Ecol Lett 6:680–687

    Article  Google Scholar 

  • Ellwood MDF, Foster WA (2004) Doubling the estimate of invertebrate biomass in a rainforest canopy. Nature 429:549–551. doi:10.1038/nature02560

    Article  CAS  Google Scholar 

  • Ellwood MDF, Manica A, Foster WA (2009) Stochastic and deterministic processes jointly structure tropical arthropod communities. Ecol Lett 12:277–284. doi:10.1111/j.1461-0248.2009.01284.x

    Article  Google Scholar 

  • Evrendilek F (2012) Modeling of spatiotemporal dynamics of biogeochemical cycles in a changing global environment. J Ecosyst Ecogr 2, e113. doi:10.4172/2157-7625.1000e113

    Article  Google Scholar 

  • Falloon P, Smith P (2009) Modelling soil carbon dynamics. In: Kutsch WL, Bahn M, Heinemeyer A (eds) Soil carbon dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Falloon P, Smith P, Bradley RI et al (2006) RothC UK: a dynamic modelling system for estimating changes in soil C at 1-km resolution in the UK. Soil Use Manag 22:274–288

    Article  Google Scholar 

  • Fincke OM, Yanoviak SP, Hanschu RD (1997) Predation by odonates depresses mosquito abundance in water-filled tree holes in Panama. Oecologia 112:244–253

    Article  Google Scholar 

  • Gaspard P (2005) Chaos, scattering and statistical mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  • Gonzalez A, Chaneton EJ (2002) Heterotroph species extinction, abundance and biomass dynamics in an experimentally fragmented microecosystem. J Anim Ecol 71:594–602

    Article  Google Scholar 

  • Holland EA, Braswell BH, Lamarque JF, Townsend A, Suleman J, Muller JF, Denterer F, Brasseur G, Levy H, Penner JE, Roelofs GJ (1997) Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems. J Geophys Res Atmos 102(D13):15849–15866

    Article  CAS  Google Scholar 

  • Hunt HW, Wall DH (2002) Modelling the effects of loss of soil biodiversity on ecosystem function. Glob Chang Biol 8:33–50

    Article  Google Scholar 

  • IPCC (2000) Land use, land-use change, and forestry. A special report of the IPCC. Cambridge University Press, Cambridge

    Google Scholar 

  • Jessup CM, Kassen R, Forde SE, Kerr B, Buckling A, Rainy PB, Bohannan BJM (2004) Big questions, small worlds: microbial model systems in ecology. Trends Ecol Evol 19:189–197

    Article  Google Scholar 

  • Kampichler C, Bruckner A, Kandeler E (2001) Use of enclosed model ecosystems in soil ecology: a bias towards laboratory research. Soil Biol Biochem 33:269–275

    Article  CAS  Google Scholar 

  • Kaplan JO (2002) Wetlands at the Last Glacial Maximum: distribution and methane emissions. Geophys Res Lett 29(6):3-1–3-4

    Article  CAS  Google Scholar 

  • Kell DB, Knowles JD (2006) The role of modeling in systems biology. In: Szallasi Z, Stelling J, Periwal V (eds) System modeling in cellular biology: from concepts to nuts and bolts. MIT Press, Cambridge, pp 3–18

    Chapter  Google Scholar 

  • Kneitel JM, Miller TE (2002) Resource and top-predator regulation in the pitcher plant (Sarracenia purpurea) inquiline community. Ecology 83:680–688

    Article  Google Scholar 

  • Krebs CJ (1996) Population cycles revisited. J Mammal 77:8–24

    Article  Google Scholar 

  • Lasdon LS (2011) Optimization theory for large systems. Dover, New York

    Google Scholar 

  • Lawler SP (1998) Ecology in a bottle: using microcosms to test theory. In: Resetarits WJ Jr, Bernando J (eds) Experimental ecology: issues and perspectives. Oxford University Press, New York, pp 236–253

    Google Scholar 

  • Levine JM (2001) Local interactions, dispersal, and native and exotic plant diversity along a California stream. Oikos 95:397–408

    Article  Google Scholar 

  • Levins R (1984) The strategy of model building in population biology. In: Sober E (ed) Conceptual issues in evolutionary biology. Cambridge University Press, Cambridge, pp 18–27

    Google Scholar 

  • Li C, Frolking S, Frolking TA (1992) A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. J Geophys Res Atmos 97:9759–9776

    Article  CAS  Google Scholar 

  • Luo Z, Wang E, Bryan BA, King D, Zhao G, Pan X, Bende-Michl U (2013) Meta-modelling soil organic sequestration potential and its application at regional scale. Ecol Appl 23:408–420

    Article  Google Scholar 

  • Miller TE, Horth L, Reeves RH (2002a) Trophic interactions in the phytotelmata communities of the pitcher plant, Sarracenia purpurea. Community Ecol 3:109–116

    Article  Google Scholar 

  • Miller TE, Kneitel JM, Burns JH (2002b) Effect of community structure on invasion success and rate. Ecology 83:898–905

    Article  Google Scholar 

  • Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827

    Article  CAS  Google Scholar 

  • Moore JK, Doney SC, Lindsay K (2004) Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Glob Biogeochem Cycles 18:4028

    Article  Google Scholar 

  • Noble D (2003) The future: putting Humpty-Dumpty together again. Biochem Soc Trans 31:156–158

    Article  CAS  Google Scholar 

  • O’Donnell AG, Colvan SR, Malosso E, Supaphol S (2005) Twenty years of molecular analysis of bacterial communities in soils and what have we learned about function? In: Bardgett RD, Usher MB, Hopkins DW (eds) Biological diversity and function in soils. Cambridge University Press, New York, pp 44–56

    Chapter  Google Scholar 

  • Odum EP (1984) The mesocosm. BioScience 34(9):558–562

    Article  Google Scholar 

  • Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic matter levels in Great Plains Grasslands. Soil Sci Soc Am J 51:1173–1179

    Article  CAS  Google Scholar 

  • Parton WJ, Ojima DS, Schimel DS (1996) Models to evaluate soil organic matter storage and dynamics. In: Carter MR, Stewart BA (eds) Structure and organic matter storage in agroecosystems. Advances in soil science. CRC, New York, pp 421–448

    Google Scholar 

  • Paustian K, Elliott ET, Peterson GA, Killian K (1996) Modelling climate, CO2 and management impacts on soil carbon in semi-arid agroecosystems. Plant and Soil 187:351–365

    Article  CAS  Google Scholar 

  • Petersen JE et al (2003) Multiscale experiments in coastal ecology: improving realism and advancing theory. Bioscience 53:1181–1197

    Article  Google Scholar 

  • Raich JW, Rastetter EB, Melillo JM, Kicklighter DW, Steudler PA, Peterson BJ, Grace AL, Moore B, Vörösmarty CJ (1991) Potential net primary productivity in South America: application of a global model. Ecol Appl 1:399–429

    Article  CAS  Google Scholar 

  • Riley WJ, Matson PA (2000) NLOSS: a mechanistic model of denitrified N2O and N2 evolution from soil. Soil Sci 165:237–249

    Article  CAS  Google Scholar 

  • Running SW, Hunt ER (1993) Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models. In: Ehleringer JR, Field CB (eds) Scaling physiological processes: leaf to globe. Academic, San Diego, pp 141–158

    Chapter  Google Scholar 

  • Schimel JP (2001) Biogeochemical models: implicit vs. explicit microbiology. In: Schulze ED, Harrison SP, Heimann M et al (eds) Global biogeochemical cycles in the climate system. Academic, San Diego, pp 177–183

    Chapter  Google Scholar 

  • Schimel DS, Braswell BH, Makeown R, Ojima DS, Parton WJ, Pulliam W (1996) Climate and nitrogen controls on the geography and timescales of terrestrial biogeochemical cycling. Global Biogeochem Cycles 10:677–692

    Article  CAS  Google Scholar 

  • Schindler DW (1998) Replication versus realism: the need for ecosystem-scale experiments. Ecosystems 1:323–334

    Article  Google Scholar 

  • Schneider DC (2001) Spatial allometry: theory and application to experimental and natural aquatic ecosystems. In: Gardner RH et al (eds) Scaling relations in experimental ecology. Columbia University Press, New York, pp 113–153

    Google Scholar 

  • Setälä H, McLean MA (2004) Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi. Oecologia 139:98–107

    Article  Google Scholar 

  • Setälä H, Berg MP, Jones TH (2005) Trophic structure and functional redundancy in soil communities. In: Bardgett RD, Usher MB, Hopkins DW (eds) Biological diversity and function in soils. Cambridge University Press, New York, pp 236–249

    Chapter  Google Scholar 

  • Sistla SA, Rastetter EB, Schimel JP (2014) Responses of a tundra system to warming using SCAMPS: a stoichiometrically coupled, acclimating microbe-plant-soil model. Ecol Monogr 84:151–170

    Article  Google Scholar 

  • Soberón JM (2010) Niche and area of distribution modeling: a population ecology perspective. Ecography 33:159–167

    Article  Google Scholar 

  • Spahni R, Wania R, Neef L, van Weele M, Pison I, Bousque P, van Velthoven P (2011) Constraining global methane emissions and uptake by ecosystems. Biogeosciences 8(6):1643–1665. doi:10.5194/bg-8-1643-2011

    Article  CAS  Google Scholar 

  • Srivastava DS (2002) The role of conservation in expanding biodiversity research. Oikos 98:351–360

    Article  Google Scholar 

  • Srivastava DS, Lawton JH (1998) Why more productive sites have more species: an experimental test of theory using tree-hole communities. Am Nat 152:510–529

    Article  CAS  Google Scholar 

  • Srivastava DS, Kolasa J, Bengtsson J, Gonzalez A, Lawler SP, Miller TE, Munguia P, Romanuk T, Schneider DC, Trzcinski MK (2004) Are natural microcosms useful model systems for ecology? Trends Ecol Evol 19:379–384

    Article  Google Scholar 

  • Tilman D (1989) Ecological experimentation: strengths and conceptual problems. In: Likens GE (ed) Long-term studies in ecology. Springer, New York, pp 136–157

    Chapter  Google Scholar 

  • Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720

    Article  CAS  Google Scholar 

  • Vitousek PM (2002) Oceanic islands as model systems for ecological studies. J Biogeogr 29:573–582

    Article  Google Scholar 

  • Wall DH, Fitter AH, Paul E (2005) Developing new perspectives from advances in soil biodiversity research. In: Bardgett RD, Usher MB, Hopkins DW (eds) Biological diversity and function in soils. Cambridge University Press, New York, pp 3–27

    Chapter  Google Scholar 

  • Wania R, Ross I, Prentice IC (2010) Implementation and evaluation of a new methane model within a dynamic global vegetation model: LPJ-WHyMe v1.3.1. Geosci Model Dev 3(2):565–584. doi:10.5194/gmd-3-565-2010

    Article  Google Scholar 

  • Zhuang Q, Melillo JM, Kicklighter DW, Prinn RG, McGuire AD, Steudler PA, Felzer BS, Hu S (2004) Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: a retrospective analysis with a process-based biogeochemistry model. Global Biogeochem Cycles 18, GB3010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. F. Bonnett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bonnett, S.A.F., Maxfield, P.J., Hill, A.A., Ellwood, M.D.F. (2017). Biogeochemistry in the Scales. In: Furze, J., Swing, K., Gupta, A., McClatchey, R., Reynolds, D. (eds) Mathematical Advances Towards Sustainable Environmental Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-43901-3_7

Download citation

Publish with us

Policies and ethics