Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 365 Accesses

Abstract

In this chapter, the effects from light sfermions on the lightest Higgs boson production and decay at the Large Hadron Collider (LHC) within the Minimal Supersymmetric Standard Model (MSSM) is studied. It is found that the scenario with light coloured sfermions (stops or sbottoms) has the potential to explain a non-universal alteration, as hinted by LHC data, of the gluon–gluon Fusion (\(\mu _{ggF}\)) with respect to the Vector Boson Fusion (VBF) event rates and, in particular, can predict \(\mu _{VBF}/\mu _{ggF} > 1\) for all Higgs boson decay channels in large areas of the parameter space. The scenario with a light stop is emphasised, as the latter is also motivated by Dark Matter and Electro-Weak baryogenesis, although we also explore scenarios with light sbottoms and/or staus as well as a SUSY induced reduced bottom Yukawa. Fits of the MSSM against the LHC data is performed, emphasising the fact that in most cases these are better than for the SM.

The original version of this chapter was revised: For detailed information please see Erratum. The erratum to this chapter is available at 10.1007/978-3-319-43452-0_7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Sensitivity to the \(h\rightarrow Z\gamma \) mode is much less in comparison, though some limits already exist. Similarly, for Higgs boson invisible decays [5].

  2. 2.

    We should also mention that, initially, both collaborations had initially observed a generic enhancement in the \(h\rightarrow \gamma \gamma \) channel, however CMS results have since shifted down and even below the SM value.

  3. 3.

    We have deliberately used so far the symbol h to signify both the SM Higgs state and the lightest MSSM CP-even one, as our MSSM solutions to the Higgs data will only involve the latter amongst the possible neutral Higgs states.

  4. 4.

    Recall, in fact, that the dominant component of the Higgs boson width for masses of order 125 GeV is typically the partial width in \(b\bar{b}\) pairs.

  5. 5.

    The maximum value of \(m_h\) displayed in Fig. 4.3b occurs for \(X_t/M_\mathrm{SUSY}\) slightly smaller than \(\sqrt{6}\) as it is calculated at two loops, where the maximal mixing value is slightly smaller and closer to 2.

References

  1. Combined coupling measurements of the Higgs-like boson with the ATLAS detector using up to 25 fb 1 of proton-proton collision data, ATLAS-CONF-2013-034, ATLAS-COM-CONF-2013-035 (2013)

    Google Scholar 

  2. Updated coupling measurements of the Higgs boson with the ATLAS detector using up to 25 fb 1 of proton-proton collision data, tech. rep. ATLAS-CONF-2014-009 (CERN, Geneva, 2014)

    Google Scholar 

  3. Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005 (2013)

    Google Scholar 

  4. Precise determination of the mass of the Higgs boson and studies of the compatibility of its couplings with the standard model. Technical report CMS-PAS-HIG-14-009 (CERN, Geneva, 2014)

    Google Scholar 

  5. M.E. Chasco, Search for invisible Higgs boson production with the CMS detector at the LHC (2013). arXiv:1310.1002

  6. J. Lee, A. Pilaftsis, M.S. Carena, S. Choi, M. Drees et al., CPsuperH: a computational tool for Higgs phenomenology in the minimal supersymmetric standard model with explicit CP violation. Comput. Phys. Commun. 156, 283–317 (2004)

    Article  ADS  Google Scholar 

  7. J.S. Lee, M. Carena, J. Ellis, A. Pilaftsis, C. Wagner, CPsuperH2.0: an improved computational tool for Higgs phenomenology in the MSSM with explicit CP violation. Comput. Phys. Commun. 180, 312–331 (2009)

    Article  ADS  MATH  Google Scholar 

  8. A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model. Phys. Rep. 459, 1–241 (2008)

    Article  ADS  Google Scholar 

  9. M. Carena, et al., Report of the tevatron higgs working group (2000). arXiv:hep-ph/0010338

  10. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, An update of the constraints on the phenomenological MSSM from the new LHC Higgs results. Phys. Lett. B 720, 153–160 (2013)

    Article  ADS  Google Scholar 

  11. P. Bechtle, S. Heinemeyer, O. StĂĄl, T. Stefaniak, G. Weiglein, L. Zeune, MSSM interpretations of the LHC discovery: light or heavy Higgs? Eur. Phys. J. C73, 2354 (2013)

    Google Scholar 

  12. K. Schmidt-Hoberg, F. Staub, M.W. Winkler, Enhanced diphoton rates at Fermi and the LHC. JHEP 2013, 124 (2013)

    Article  Google Scholar 

  13. Z. Heng, A 125 GeV Higgs and its di-photon signal in different SUSY models: a mini review. Adv. High Energy Phys. 2012, 312719 (2012)

    Article  MATH  Google Scholar 

  14. M. Drees, Supersymmetric explanation of the excess of Higgs-like events at the LHC and at LEP. Phys. Rev. D86, 115018 (2012)

    ADS  Google Scholar 

  15. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, The Higgs sector of the phenomenological MSSM in the light of the Higgs boson discovery. JHEP 2012, 107 (2012)

    Article  ADS  Google Scholar 

  16. K. Schmidt-Hoberg, F. Staub, Enhanced h \({\gamma }{\gamma }\) rate in MSSM singlet extensions. JHEP 2012, 195 (2012)

    Article  ADS  Google Scholar 

  17. M. Carena, I. Low, C.E. Wagner, Implications of a modified Higgs to Diphoton decay width. JHEP 1208, 060 (2012)

    Article  ADS  Google Scholar 

  18. M. Carena, S. Gori, N.R. Shah, C.E.M. Wagner, A 125 GeV SM-like Higgs in the MSSM and the rate. JHEP 2012, 14 (2012)

    Article  Google Scholar 

  19. L.J. Hall, D. Pinner, J.T. Ruderman, A natural SUSY Higgs near 125 GeV. JHEP 2012, 131 (2012)

    Article  Google Scholar 

  20. S. Heinemeyer, O. Stål, G. Weiglein, Interpreting the LHC Higgs search results in the MSSM. Phys. Lett. B710, 201–206 (2012)

    Google Scholar 

  21. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models. Phys. Lett. B708, 162–169 (2012)

    Article  ADS  Google Scholar 

  22. P. Draper, P. Meade, M. Reece, D. Shih, Implications of a 125 GeV Higgs boson for the MSSM and low-scale supersymmetry breaking. Phys. Rev. D85, 095007 (2012)

    ADS  Google Scholar 

  23. N. Chen, H.-J. He, LHC signatures of two-Higgs-doublets with fourth family. JHEP 2012, 62 (2012)

    Article  Google Scholar 

  24. G. Guo, B. Ren, X.-G. He, LHC evidence of a 126 GeV Higgs Boson from with \(H\rightarrow {\gamma }{\gamma }\) three and four generations (2011). arXiv:1112.3188

  25. X.-G. He, B. Ren, J. Tandean, Hints of standard model Higgs Boson at the LHC and light dark matter searches. Phys. Rev. D85, 093019 (2012)

    ADS  Google Scholar 

  26. A. Djouadi, O. Lebedev, Y. Mambrini, J. Quevillon, Implications of LHC searches for Higgs-portal dark matter. Phys. Lett. B709, 65–69 (2012)

    Article  ADS  Google Scholar 

  27. K. Cheung, T.-C. Yuan, Could the excess seen at 124126 GeV be due to the Randall-Sundrum radion? Phys. Rev. Lett. 108, 141602 (2012)

    Article  ADS  Google Scholar 

  28. B. Batell, S. Gori, L.-T. Wang, Exploring the Higgs portal with 10 fb1 at the LHC. JHEP 2012, 172 (2012)

    Article  Google Scholar 

  29. N.D. Christensen, T. Han, S. Su, MSSM Higgs Bosons at the LHC. Phys. Rev. D85, 115018 (2012)

    ADS  Google Scholar 

  30. M. Kadastik, K. Kannike, A. Racioppi, M. Raidal, Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology. JHEP 2012, 61 (2012)

    Article  Google Scholar 

  31. H. Baer, V. Barger, A. Mustafayev, Implications of a 125 GeV Higgs scalar for the LHC supersymmetry and neutralino dark matter searches. Phys. Rev. D85, 075010 (2012)

    ADS  Google Scholar 

  32. L. Aparicio, D.G. Cerdeno, L.E. Ibáñez, A 119–125 GeV Higgs from a string derived slice of the CMSSM. JHEP 2012, 126 (2012)

    Article  ADS  Google Scholar 

  33. J. Ellis, K.A. Olive, Revisiting the Higgs mass and dark matter in the CMSSM. Eur. Phys. J. C72, 2005 (2012)

    Article  ADS  Google Scholar 

  34. H. Baer, V. Barger, A. Mustafayev, Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar. JHEP 2012, 91 (2012)

    Article  Google Scholar 

  35. N. Desai, B. Mukhopadhyaya, S. Niyogi, Constraints on Invisible Higgs Decay in MSSM in the Light of Diphoton Rates from the LHC (2012). arXiv:1202.5190

  36. J. Cao, Z. Heng, D. Li, J.M. Yang, Current experimental constraints on the lightest Higgs boson mass in the constrained MSSM. Phys. Lett. B710, 665–670 (2012)

    Article  ADS  Google Scholar 

  37. S. King, M. Mühlleitner, R. Nevzorov, K. Walz, Natural NMSSM Higgs bosons. Nucl. Phys. B870, 323–352 (2013)

    Article  ADS  MATH  Google Scholar 

  38. J.F. Gunion, Y. Jiang, S. Kraml, Could two NMSSM Higgs bosons be present near 125 GeV? Phys. Rev. D 86, 071702 (2012)

    Article  ADS  Google Scholar 

  39. G. Belanger, U. Ellwanger, J.F. Gunion, Y. Jiang, S. Kraml, J.H. Schwarz, Higgs bosons at 98 and 125 GeV at LEP and the LHC. JHEP 2013, 69 (2013)

    Article  Google Scholar 

  40. J.F. Gunion, Y. Jiang, S. Kraml, The constrained NMSSM and Higgs near 125 GeV. Phys. Lett. B710, 454–459 (2012)

    Article  ADS  Google Scholar 

  41. U. Ellwanger, C. Hugonie, Higgs bosons near 125 GeV in the NMSSM with constraints at the GUT scale. Adv. High Energy Phys. 2012, 1–18 (2012)

    Article  MATH  Google Scholar 

  42. U. Ellwanger, A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM. JHEP 2012, 44 (2012)

    Article  MATH  Google Scholar 

  43. J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang, J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM. JHEP 1203, 086 (2012)

    Article  ADS  Google Scholar 

  44. Z. Kang, J. Li, T. Li, On naturalness of the MSSM and NMSSM. JHEP 2012, 24 (2012)

    Article  Google Scholar 

  45. A. Elsayed, S. Khalil, S. Moretti, Higgs mass corrections in the SUSY model with inverse seesaw. Phys. Lett. B715, 208–213 (2012)

    Article  ADS  Google Scholar 

  46. L. Basso, F. Staub, Enhancing h with staus in supersymmetric models with an extended gauge sector. Phys. Rev. D87, 015011 (2013)

    ADS  Google Scholar 

  47. S. Khalil, S. Moretti, Heavy neutrinos, Z’ and Higgs bosons at the LHC: new particles from an old symmetry. J. Mod. Phys. 4, 7–10 (2013)

    Article  Google Scholar 

  48. S. Khalil, S. Moretti, A simple symmetry as a guide toward new physics beyond the standard model. front. phys. 1, 10 (2013)

    Article  Google Scholar 

  49. B. Batell, S. Jung, C.E.M. Wagner, Very light charginos and Higgs decays (2013). arXiv:1309.2297

  50. M. Carena, S. Gori, N.R. Shah, C.E. Wagner, L.-T. Wang, Light stau phenomenology and the Higgs rate. JHEP 1207, 175 (2012)

    Article  ADS  Google Scholar 

  51. T. Han, Z. Liu, A. Natarajan, Dark matter and Higgs bosons in the MSSM. JHEP 1311, 008 (2013)

    Article  ADS  Google Scholar 

  52. J.R. Ellis, G. Ridolfi, F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons. Phys. Lett. B257, 83–91 (1990)

    ADS  Google Scholar 

  53. H. Haber, R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m Z? Phys. Rev. Lett. 66, 1815–1818 (1991)

    Article  ADS  Google Scholar 

  54. H.E. Haber, R. Hempfling, A.H. Hoang, Approximating the radiatively corrected Higgs mass in the minimal supersymmetric model. Z. Phys. C75, 539–554 (1997)

    Google Scholar 

  55. Joint LEP2 Supersymmetry Working Group, Combined LEP Selectron/Smuon/Stau Results, 183–208 GeV (2004). http://lepsusy.web.cern.ch/lepsusy

  56. M. Drees, A Supersymmetric explanation of the excess of Higgs-like events at LEP. Phys. Rev. D71, 115006 (2005)

    ADS  Google Scholar 

  57. J. Frere, D. Jones, S. Raby, Fermion masses and induction of the weak scale by supergravity. Nucl. Phys. B222, 11 (1983)

    Article  ADS  Google Scholar 

  58. M. Claudson, L.J. Hall, I. Hinchliffe, Low-energy supergravity: false vacua and vacuous predictions. Nucl. Phys. B228, 501 (1983)

    Article  ADS  Google Scholar 

  59. J. Camargo-Molina, B. O’Leary, W. Porod, F. Staub, Vevacious: a tool for finding the global minima of one-loop effective potentials with many scalars. Eur. Phys. J. C73, 2588 (2013)

    Article  ADS  Google Scholar 

  60. M.A. Shifman, A. Vainshtein, M. Voloshin, V.I. Zakharov, Low-energy theorems for Higgs boson couplings to photons. Sov. J. Nucl. Phys. 30, 711–716 (1979)

    Google Scholar 

  61. J. Ellis, M.K. Gaillard, D. Nanopoulos, A phenomenological profile of the Higgs boson. Nucl. Phys. B106, 292–340 (1976)

    Article  ADS  Google Scholar 

  62. A. Chakraborty, B. Das, J.L. Diaz-Cruz, D.K. Ghosh, S. Moretti, et al., The 125 GeV Higgs signal at the LHC in the CP Violating MSSM (2013). arXiv:1301.2745

  63. G. Abbiendi et al., Search for chargino and neutralino production at s**(1/2) = 192-GeV to 209 GeV at LEP. Eur. Phys. J. C35, 1–20 (2004)

    Google Scholar 

  64. M. Carena, D. Garcia, U. Nierste, C.E. Wagner, Effective Lagrangian for the interaction in the MSSM and charged Higgs phenomenology. Nucl. Phys. B577, 88–120 (2000)

    Article  ADS  Google Scholar 

  65. R. Barbieri, G. Giudice, Upper bounds on supersymmetric particle masses. Nucl. Phys. B306, 63 (1988)

    Article  ADS  Google Scholar 

  66. J.R. Ellis, K. Enqvist, D.V. Nanopoulos, F. Zwirner, Observables in low-energy superstring models. Mod. Phys. Lett. A1, 57 (1986)

    Article  ADS  Google Scholar 

  67. H. Baer, V. Barger, P. Huang, D. Mickelson, A. Mustafayev et al., Radiative natural supersymmetry: reconciling electroweak fine-tuning and the Higgs boson mass. Phys. Rev. D87, 115028 (2013)

    ADS  Google Scholar 

  68. D. Curtin, P. Jaiswal, P. Meade, Excluding electroweak baryogenesis in the MSSM. JHEP 1208, 005 (2012)

    Article  ADS  Google Scholar 

  69. M. Carena, G. Nardini, M. Quiros, C.E. Wagner, MSSM electroweak baryogenesis and LHC data. JHEP 1302, 001 (2013)

    Article  ADS  Google Scholar 

  70. A. Belyaev, M.S. Brown, R. Foadi, M.T. Frandsen, The technicolor Higgs in the light of LHC data. Phys. Rev. D90, 035012 (2014)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Christopher Thomas .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Thomas, M.C. (2016). Supersymmetric Higgs. In: Beyond Standard Model Collider Phenomenology of Higgs Physics and Supersymmetry. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-43452-0_4

Download citation

Publish with us

Policies and ethics