Skip to main content

Image Segmentation with Superpixel Based Covariance Descriptor

  • Conference paper
  • First Online:
Trends and Applications in Knowledge Discovery and Data Mining (PAKDD 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9794))

Included in the following conference series:

Abstract

This paper investigates the problem of image segmentation using superpixels. We propose two approaches to enhance the discriminative ability of the superpixel’s covariance descriptors. In the first one, we employ the Log-Euclidean distance as the metric on the covariance manifolds, and then use the RBF kernel to measure the similarities between covariance descriptors. The second method is focused on extracting the subspace structure of the set of covariance descriptors by extending a low rank representation algorithm on to the covariance manifolds. Experiments are carried out with the Berkly Segmentation Dataset, and compared with the state-of-the-art segmentation algorithms, both methods are competitive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. TPAMI 33(5), 898–916 (2011)

    Article  Google Scholar 

  2. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Fast and Simple Computations on Tensors with Log-euclidean Metrics, Phd thesis, INRIA (2005)

    Google Scholar 

  3. Cai, J.-F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM (JACM) 58(3), 11 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, J., Yang, J.: Robust subspace segmentation via low-rank representation. IEEE Trans. Cybern. 44(8), 1432–1445 (2014)

    Article  Google Scholar 

  6. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  7. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)

    Article  Google Scholar 

  8. Freixenet, J., Muñoz, X., Raba, D., Martí, J., Cufí, X.: Yet another survey on image segmentation: region and boundary information integration. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part III. LNCS, vol. 2352, pp. 408–422. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Fu, Y., Gao, J., Hong, X., Tien, D.: Low rank representation on Riemannian manifold of symmetric positive definite matrices. In: Proceedings of SDM. SIAM (2015)

    Google Scholar 

  10. Ganesh, A., Lin, Z., Wright, J., Wu, L., Chen, M., Ma, Y.: Fast algorithms for recovering a corrupted low-rank matrix. In: 2009 3rd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 213–216. IEEE (2009)

    Google Scholar 

  11. Gu, X., Deng, J.D., Purvis, M.K.: Improving superpixel-based image segmentation by incorporating color covariance matrix manifolds. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 4403–4406. IEEE (2014)

    Google Scholar 

  12. Habiboğlu, Y.H., Günay, O., Çetin, A.E.: Covariance matrix-based fire and flame detection method in video. Mach. Vis. Appl. 23(6), 1103–1113 (2012)

    Article  Google Scholar 

  13. Harandi, M.T., Sanderson, C., Wiliem, A., Lovell, B.C.: Kernel analysis over Riemannian manifolds for visual recognition of actions, pedestrians and textures. In: 2012 IEEE Workshop on Applications of Computer Vision (WACV), pp. 433–439. IEEE (2012)

    Google Scholar 

  14. Jayasumana, S., Hartley, R., Salzmann, M., Li, H., Harandi, M.: Kernel methods on Riemannian manifolds with Gaussian RBF kernels. IEEE Trans. Pattern Anal. Mach. Intell. 37(12), 2464–2477 (2015). IEEE

    Article  Google Scholar 

  15. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, Z., Wu, X.-M., Chang, S.-F.: Segmentation using superpixels: a bipartite graph partitioning approach. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 789–796. IEEE (2012)

    Google Scholar 

  17. Lin, Z., Chen, M., Ma, Y.: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices (2010). arXiv preprint arXiv:1009.5055

  18. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2013)

    Article  Google Scholar 

  19. Liu, G., Yan, S.: Latent low-rank representation for subspace segmentation and feature extraction. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1615–1622. IEEE (2011)

    Google Scholar 

  20. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV 2001, vol. 2, pp. 416–423 (2001)

    Google Scholar 

  21. Meilă, M.: Comparing clusterings: an axiomatic view. In: ICML 2005, pp. 577–584. ACM (2005)

    Google Scholar 

  22. Unnikrishnan, R., Pantofaru, C., Hebert, M.: Toward objective evaluation of image segmentation algorithms. TPAMI 29(6), 929–944 (2007)

    Article  Google Scholar 

  23. Wang, B., Hu, Y., Gao, J., Sun, Y., Yin, B.: Kernelized low rank representation on grassmann manifolds (2015). arXiv preprint arXiv:1504.01806

    Google Scholar 

  24. Wang, B., Hu, Y., Gao, J., Sun, Y., Yin, B.: Low rank representation on grassmann manifolds: an extrinsic perspective (2015). arXiv preprint arXiv:1504.01807

    Google Scholar 

  25. Wang, X., Li, H., Masnou, S., Chen, L.: Sparse coding and mid-level superpixel-feature for \(\ell \) \(_\text{0 }\)-graph based unsupervised image segmentation. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013, Part II. LNCS, vol. 8048, pp. 160–168. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  26. Wright, J., Ganesh, A., Rao, S., Peng, Y., Ma, Y.: Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization. In: Advances in Neural Information Processing Systems, pp. 2080–2088 (2009)

    Google Scholar 

  27. Xie, Y., Ho, J., Vemuri, B.: On a nonlinear generalization of sparse coding and dictionary learning. In: Proceedings of the International Conference on Machine Learning, p. 1480. NIH Public Access (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianbin Gu .

Editor information

Editors and Affiliations

Appendix: Solution of Eq. (4)

Appendix: Solution of Eq. (4)

The solution of Eq. (4) is partly refer to the work of Wang et al. [24], but the distance induced by Frobenius norm is not geodesic. The problem is rephrased as follows.

Find a matrix Z that satisfied,

$$\begin{aligned} {\begin{matrix} &{}\min _{E,Z}{\Vert E\Vert _F^2 + \lambda \Vert Z\Vert _{*}},\\ &{}s.t. \quad \mathcal {X} = \mathcal {X}_{\times _3}Z+E \end{matrix}} \end{aligned}$$

where, \(\mathcal {X}\) is a 3-order tensor stacking by covariance matrices \((X_i)_{d\times d}\), \(i=1,2,...,n\); \(\Vert \cdot \Vert _F\) is the Frobenius norm; \(\Vert \cdot \Vert _{*}\) is the nuclear norm; \(\lambda \) is the balance parameter; \(\times _3\) means mode-3 multiplication of a tensor and matrix [15].

For the error term E, we have \(\Vert E\Vert _F^2 = \Vert \mathcal {X}-\mathcal {X}_{\times 3}Z\Vert _{F}^2\), and we can rewrite \(\Vert E\Vert _F^2\) as,

$$\begin{aligned} \Vert E\Vert _F^2 = \sum _{i}^{N}\Vert E_i\Vert _F^2, \end{aligned}$$

where, \(E_i = X_i - \sum _j^Nz_{ij}X_j \), i.e. the i-th slice of E.

Note that for matrix A, it holds \(\Vert A\Vert _{F}^2 = tr(A^TA)\), and \(X_i\) is symmetric, so, the above equation can be expanded as,

$$\begin{aligned} {\begin{matrix} &{}\Vert E_i\Vert _F^2 = tr[(X_i - \sum _j^Nz_{ij}X_j)^T(X_i-\sum _j^Nz_{ij}X_j)]\\ &{}=tr(X_i^TX_i) - tr(X_i^T\sum _j^Nz_{ij}X_j) -tr(\sum _j^Nz_{ij}X_j^TX_i)\\ &{}+tr(\sum _{j_1}^Nz_{ij_1}X_{j_1}^T\sum _{j_2}^Nz_{ij_2}X_{j_2})\\ &{}=tr(X_iX_i) - 2tr(\sum _{j}^Nz_{ij}X_iX_j) + tr(\sum _{j_1,j_2}^Nz_{ij_1}z_{ij_2}X_{j_1}X_{j_2}). \end{matrix}} \end{aligned}$$

Let \(\varDelta \) be a symmetric matrix of size \(N\times N\), whose entries are \(\varDelta _{ij}=\varDelta _{ji}=tr(X_iX_j)\). Because \(X_i\) is a symmetric matrix, \(\varDelta _{ij}\) can be written as \(\varDelta _{ij}=vec(X_i)^Tvec(X_j)\), where \(vec(\cdot )\) is an operator that vectorized a matrix. As a Gram matrix, \(\varDelta \) is positive semidefinite. So, we have,

$$\begin{aligned} {\begin{matrix} \Vert E_i\Vert _F^2 &{}= \varDelta _{ii} - 2\sum _{j=1}^{N}z_{ij}\varDelta _{ij} + \sum _{j_1}^{N}\sum _{j_2}^{N}z_{ij_1}z_{ij_2}\varDelta _{j_1j_2}\\ &{}= \varDelta {ii} - 2\sum _{j=1}^{N}z_{ij}\varDelta _{ij} + \mathbf z _i\varDelta \mathbf z _i^T. \end{matrix}} \end{aligned}$$

For \(\varDelta = PP^T\),

$$\begin{aligned} {\begin{matrix} \Vert E\Vert _F^2 &{}= \sum _{i=1}^{N}\varDelta _{ii} - 2tr[Z\varDelta ] + tr[Z\varDelta Z^T]\\ &{}= C + \Vert ZP-P\Vert _{F}^2, \end{matrix}} \end{aligned}$$

Then, the optimization is equivalent to:

$$\begin{aligned} \min _{Z}\Vert ZP-P\Vert _F^2 +\lambda \Vert Z\Vert _{*}. \end{aligned}$$

Let \(\varDelta \) be a symmetric matrix, whose entries are \(\varDelta _{ij}=\varDelta _{ji}=tr(X_iX_j)\), and \(P = \varDelta ^{\frac{1}{2}}\). First, we transform the above equation into an equivalent formulation

$$\begin{aligned} {\begin{matrix} &{}\min _{Z}\frac{1}{\lambda }\Vert ZP-P\Vert _{F}^2 +\Vert J\Vert _{*},\\ &{}s.t. \qquad J=Z. \end{matrix}} \end{aligned}$$

Then by ALM, we have,

$$\begin{aligned} \min _{Z,J}\frac{1}{\lambda }\Vert ZP-P\Vert _{F}^2 +\Vert J\Vert _{*} + <Y,Z-J>+\frac{\mu }{2}\Vert Z-J\Vert _{F}^2, \end{aligned}$$

where, Y is the Lagrange coefficient, \(\lambda \) and \(\mu \) are scale parameters.

The above problem can be solved by the following two subproblems [17],

$$\begin{aligned} J_{k+1}=\min _{J}(\Vert J\Vert _{*}+<Y,Z_k-J> +\frac{\mu }{2}\Vert Z_k-J\Vert _F^2) \end{aligned}$$

and,

$$\begin{aligned} Z_{k+1} = \min _{Z}(\frac{1}{\lambda }\Vert ZP-P\Vert _F^2+<Y,Z-J_k>+\frac{\mu }{2}\Vert Z-J\Vert _F^2). \end{aligned}$$

Fortunately according to [3], the solutions for the above subproblems have the following close forms,

$$\begin{aligned} J = \varTheta (Z+\frac{Y}{\mu }), \end{aligned}$$
$$\begin{aligned} Z = (\lambda \mu J -\lambda Y +2\varDelta )(2\varDelta +\lambda \mu I)^{-1}, \end{aligned}$$

where, \(\varTheta (\cdot )\) is the singular value thresholding operator [3].

Thus, by iteratively updating J and Z until the converge conditions are satisfied, a solution for Eq. (4) can be found.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Gu, X., Purvis, M. (2016). Image Segmentation with Superpixel Based Covariance Descriptor. In: Cao, H., Li, J., Wang, R. (eds) Trends and Applications in Knowledge Discovery and Data Mining. PAKDD 2016. Lecture Notes in Computer Science(), vol 9794. Springer, Cham. https://doi.org/10.1007/978-3-319-42996-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42996-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42995-3

  • Online ISBN: 978-3-319-42996-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics