Skip to main content

Waves and Solitons

  • Chapter
  • First Online:
A Primer on Quantum Fluids

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 1412 Accesses

Abstract

In the previous chapter we considered the shape of steady state condensates, either homogeneous or confined by trapping potentials. We have seen that the condensate described by the GPE is a special kind of fluid, similar to the idealized Euler fluid without viscosity that appears in classical fluid dynamics textbooks. Not surprisingly for a fluid, the dynamics of the condensate exhibit a variety of interesting time-dependent phenomena, from sound waves and shape oscillations, to solitons and vortices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We write the amplitude of the second term as \(B^*\) rather than B for mathematical convenience.

  2. 2.

    The phase velocity of a wave is the rate at which its phase propagates in space.

  3. 3.

    If a harmonic potential is included, then a positive \(x^2\) term is added to \(E(\ell )/N\) which then does support an energy minimum, representing the ground trapped condensate.

  4. 4.

    The superposition theorem does not apply to the GPE since it is a nonlinear equation; constructing a superposition is only a valid approximation if the density is low. This condition is satisfied here since we are concerned with the weak overlap between well-separated solitons.

References

  1. M.R. Andrews et al., Phys. Rev. Lett. 79, 553 (1997)

    Article  ADS  Google Scholar 

  2. Y. Castin, R. Dum, Phys. Rev. Lett. 77, 5315 (1996)

    Article  ADS  Google Scholar 

  3. M.-O. Mewes et al., Phys. Rev. Lett. 77, 416 (1996)

    Article  ADS  Google Scholar 

  4. T. Dauxois, M. Peyrard, Physics of Solitons (Cambridge University Press, Cambridge, 2006)

    MATH  Google Scholar 

  5. M.J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform (SIAM, Philadelphia, 1981)

    Book  MATH  Google Scholar 

  6. P.G. Drazin, R.S. Johnson, Solitons: An Introduction, 2nd edn. (Cambridge University Press, Cambridge, 1989)

    Book  MATH  Google Scholar 

  7. D.J. Frantzeskakis, J. Phys. A 43, 213001 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  8. Th Busch, J.R. Anglin, Phys. Rev. Lett. 84, 2298 (2000)

    Article  ADS  Google Scholar 

  9. S. Burger et al., Phys. Rev. Lett. 83, 5198 (1999)

    Article  ADS  Google Scholar 

  10. J. Denschlag et al., Science 287, 97 (2000)

    Article  ADS  Google Scholar 

  11. C. Becker et al., Nat. Phys. 4, 496 (2008)

    Article  Google Scholar 

  12. S. Stellmer et al., Phys. Rev. Lett. 101, 120406 (2008)

    Article  ADS  Google Scholar 

  13. A. Weller et al., Phys. Rev. Lett. 101, 130401 (2008)

    Article  ADS  Google Scholar 

  14. J. Brand, W.P. Reinhardt, Phys. Rev. A 65, 043612 (2002)

    Article  ADS  Google Scholar 

  15. T.P. Billam, A.L. Marchant, S.L. Cornish, S.A. Gardiner, N.G. Parker, Bright solitary matter waves: formation, stability and interactions, in Spontaneous Symmetry Breaking, Self-Trapping and Josephson Oscillations, ed. by B.A. Malomed (Springer, Berlin, 2013)

    Google Scholar 

  16. K.E. Strecker, G.B. Partridge, A.G. Truscott, R.G. Hulet, Nature 417, 150 (2002)

    Article  ADS  Google Scholar 

  17. L. Khaykovich et al., Science 296, 1290 (2002)

    Article  ADS  Google Scholar 

  18. J.H.V. Nguyen, P. Dyke, D. Luo, B.A. Malomed, R.G. Hulet, Nat. Phys. 10, 918 (2014)

    Article  Google Scholar 

  19. A.L. Marchant, T.P. Billam, T.P. Wiles, M.M.H. Yu, S.A. Gardiner, S.L. Cornish, Nat. Commun. 4, 1865 (2013)

    Article  ADS  Google Scholar 

  20. P. Nozieres, D. Pines, The Theory of Quantum Liquids (Perseus Books, Cambridge, 1999)

    Google Scholar 

  21. S. Serafini, M. Barbiero, M. Debortoli, S. Donadello, F. Larcher, F. Dalfovo, G.Lamporesi, G. Ferrari, Phys. Rev. Lett. 115, 170402 (2015)

    Google Scholar 

  22. F. Dalfovo, Dynamics of trapped Bose-condensed gases in mean-field theory. in Proceedings of the International School of Physics Enrico Fermi, Bose-Einstein Condensation in Atomic Gases, ed. by M. Inguscio, S. Stringari, C.E. Wieman (IOS Press, Amsterdam, 1999)

    Google Scholar 

  23. L.P. Pitaevskii, S. Stringari, Bose-Einstein Condensation. International Series of Monographs on Physics (Oxford Science Publications, Oxford, 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo F. Barenghi .

Problems

Problems

4.1

For a dark soliton, the integrals of motion in Eqs. (4.35)–(4.37) are renormalized so as to remove the contribution from the background and lead to finite values,

$$\begin{aligned} N_\mathrm{s}= & {} \int \limits _{-\infty }^{+\infty }(n_0-|\psi |^2)~\mathrm{d}x \nonumber \\ \mathcal {P}_\mathrm{s}= & {} \frac{i\hbar }{2} \int \limits _{-\infty }^{+\infty }\left( \psi \frac{\partial \psi ^*}{\partial x} -\psi ^* \frac{\partial \psi }{\partial x}\right) \left( 1-\frac{n_0}{|\psi |^2} \right) \mathrm{d}x \nonumber \\ E_\mathrm{s}= & {} \int \limits _{-\infty }^{+\infty }\left( \frac{\hbar ^2}{2m}\left| \frac{\partial \psi }{\partial x} \right| ^2 + \frac{g}{2}(|\psi |^2-n_0)^2 \right) \mathrm{d}x \nonumber \end{aligned}$$

Evaluate these integrals using the dark soliton solution Eq. (4.38), leaving your answers in terms of \(\xi , n_0, u\) and c.

4.2

Consider a dark soliton in a harmonically-trapped condensate. Approximating the background condensate with the Thomas–Fermi profile \(n(x)=n_0(1-x^2/R_x^2)\) (for \(x \le R_x\), otherwise \(n=0\)) and treating the soliton depth \(n_\mathrm{d}\) to be constant, obtain an expression for the soliton speed as a function of its position x and depth \(n_\mathrm{d}\). Hence obtain an expression for the turning points of its motion.

4.3

Show that the static (\(u=0\)) bright soliton solution, obtained from Eq. (4.52), is a solution to the 1D attractive time-independent GPE with \(V(x)=0\), i.e.,

$$\begin{aligned} \mu \psi = -\frac{\hbar ^2}{2m}\frac{\mathrm{d}^2 \psi }{\mathrm{d}x^2}-|g||\psi |^2 \psi , \end{aligned}$$
(4.62)

and hence determine an expression for the chemical potential of the soliton.

4.4

Using the general bright soliton solution, Eq. (4.52), evaluate the soliton integrals of motion according to Eqs. (4.35)–(4.37). The soliton solution is already normalized to the number of atoms, N. Show that the bright soliton behaves as a classical particle with positive mass.

4.5

Consider a 3D bright soliton in a cylindrically-symmetric waveguide with tight harmonic confinement (of frequency \(\omega _r\)) in r and no trapping along z. We can construct the ansatz for the soliton,

$$\begin{aligned} \psi (z,r)=A \mathrm{sech} \left( \frac{z}{l_r \sigma _z} \right) \exp \left( -\frac{r^2}{2 l_r^2 \sigma _r^2} \right) , \end{aligned}$$
(4.63)

where \(l_r=\sqrt{\hbar /m \omega _r}\) is the harmonic oscillator length in the radial plane and \(\sigma _r\) and \(\sigma _z\) are the dimensionless variational length parameters.

  1. (a)

    Normalize the ansatz to N atoms to show that \(A=(N/2 \pi l_r^3 \sigma _r^2 \sigma _z)\).

  2. (b)

    Show that the variational energy of this ansatz is,

    $$\begin{aligned} E = \hbar \omega _r N \left( \frac{1}{6 \sigma _z^2} + \frac{1}{2 \sigma _r^2} + \frac{\sigma _r^2}{2} + \frac{\gamma }{3 \sigma _r^2 \sigma _z}\right) , \end{aligned}$$
    (4.64)

    where \(\gamma = N a_\mathrm{s}/l_r\).

  3. (c)

    Make a 2D plot of the variational energy per particle, \(E/N\hbar \omega _r\) (scaled by the transverse harmonic energy) as a function of the two variational length parameters, and plot this for \(\gamma =-0.5\). Locate the variational solution in this 2D “energy landscape”. Repeat for \(\gamma =-1\); what happens to the variational solution? By varying \(\gamma \) estimate the critical value at which the solutions no longer exist (and they become prone to collapse).

4.6

Consider an object of mass M moving at velocity \(\mathbf{v}_i\) which creates an excitation of energy E and momentum \(\mathbf{p}=\hbar \mathbf{k}\). Show that Landau’s critical velocity, \(v_c=\mathrm{min}(E/p)\), is equivalent to \(dE/dp=E/p\). Compare Landau’s critical velocity for the ideal gas (dispersion relation \(E(p)=p^2/2M\)) against the weakly-interacting Bose gas. Finally show that in liquid helium II, Landau’s critical velocity is \(v_c\approx 60~\mathrm{m/s}\). Hint: assume that near the roton minimum the dispersion relation, shown in Fig. 4.1b, has the approximate form \(E(p)=\varDelta _0 +(p-p_0)^2/(2 \mu _0)\) where (at very low pressure) \(\varDelta _0=1.20 \times 10^{-22}~\mathrm{J}\) is the energy gap, \(p_0=\hbar k_0=2.02 \times 10^{-24}~\mathrm{kg~m/s}\) is the momentum at the roton minimum, \(\mu _0=0.161~m_4\) is the effective roton mass, and \(m_4=6.65 \times 10^{-27}~\mathrm{kg}\) is the mass of one \(^4\)He atom.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Barenghi, C.F., Parker, N.G. (2016). Waves and Solitons. In: A Primer on Quantum Fluids. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-42476-7_4

Download citation

Publish with us

Policies and ethics