Skip to main content

Efficient Knot Discrimination via Quandle Coloring with SAT and #-SAT

  • Conference paper
  • First Online:
Book cover Mathematical Software – ICMS 2016 (ICMS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9725))

Included in the following conference series:

  • 1639 Accesses

Abstract

We apply SAT and #-SAT to problems of computational topology: knot detection and recognition. Quandle coloring can be viewed as associations of elements of algebraic structures, called quandles, to arcs of knot diagrams such that certain algebraic relations hold at each crossing. The existence of a coloring (called colorability) and the number of colorings of a knot by a quandle are knot invariants that can be used to distinguish knots. We realise coloring instances as SAT and #-SAT instances, and produce experimental data demonstrating that a SAT-based approach to colorability is a practically efficient method for knot detection and #-SAT can be utilised for knot recognition.

D. Stanovský—Partially supported by the GAČR grant 13-01832S.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buck, D., Flapan, E. (eds.): Applications of Knot Theory. American Mathematical Society Short Course, San Diego, CA, USA, 4–5 January 2008. American Mathematical Society (AMS), Providence, RI (2009)

    Google Scholar 

  2. Burton, B.A., Özlen, M.: A fast branching algorithm for unknot recognizion with experimental polynomial-time behaviour (2012). http://arxiv.org/abs/1211.1079v3

  3. Culler, M., Dunfield, N.M., Weeks, J.R.: SnapPy, a computer program for studying the topology of \(3\)-manifolds. http://snappy.computop.org

  4. Clark, W.E., Elhamdadi, M., Saito, M., Yeatman, T.: Quandle colorings of knots and applications. J. Knot Theory Ramif. 23, 1450035 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cha, J.C., Livingston, C.: Knotinfo: table of knot invariants. http://www.indiana.edu/~knotinfo. Accessed Jan 2015

  6. Quandle colouring data (2015). http://cgi.csc.liv.ac.uk/~alexei/quandle_colourings

  7. Dynnikov, I.A.: Recognition algorithms in knot theory. Uspekhi Mat. Nauk 58(6(354)), 45–92 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fish, A., Lisitsa, A.: Detecting unknots via equational reasoning, I: exploration. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 76–91. Springer, Heidelberg (2014)

    Google Scholar 

  9. Fish, A., Lisitsa, A., Stanovský, D.: A combinatorial approach to knot recognition. In: Horne, R. (ed.) EGC 2015. CCIS, vol. 514, pp. 64–78. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25043-4_7

    Google Scholar 

  10. Faddeev, L., Niemi, A.J.: Stable knot-like structures in classical field theory. Nature 387, 58–61 (1997)

    Article  Google Scholar 

  11. Flint, O., Rankin, S.: Gauss codes for the distinct minimal diagrams for the primealternating knots of 13 crossings. http://www-home.math.uwo.ca/~srankin/knots/knotprint.html. Accessed Jan 2016

  12. Hass, J., Lagarias, J.C., Pippenger, N.: The computational complexity of knot and link problems. J. Assoc. Comput. Mach. 46, 185–211 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jaeger, F., Vertigan, D.L., Welsh, D.J.A.: On the computational complexity of the Jones and Tutte polynomials. Math. Proc. Camb. Philos. Soc. 108, 35–53 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kuperberg, G.: Knottedness is in NP, modulo GRH. Adv. Math. 256, 493–506 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sumners, D.: Untangling DNA. Math. Intelligencer 12, 71–80 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Lisitsa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Fish, A., Lisitsa, A., Stanovský, D., Swartwood, S. (2016). Efficient Knot Discrimination via Quandle Coloring with SAT and #-SAT. In: Greuel, GM., Koch, T., Paule, P., Sommese, A. (eds) Mathematical Software – ICMS 2016. ICMS 2016. Lecture Notes in Computer Science(), vol 9725. Springer, Cham. https://doi.org/10.1007/978-3-319-42432-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42432-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42431-6

  • Online ISBN: 978-3-319-42432-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics