Skip to main content

The Electromagnetic–Thermal Dosimetry Model of the Human Brain

  • Conference paper
  • First Online:
  • 1908 Accesses

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 178))

Abstract

The electromagnetic–thermal dosimetry model for the human brain exposed to EM radiation is developed. The electromagnetic (EM) model based on the surface integral equation (SIE) formulation is derived using the equivalence theorem for the case of a lossy homogeneous dielectric body. The thermal dosimetry model of the brain is based on the form of Pennes’ equation of heat transfer in biological tissue. The numerical solution of the EM model is carried using the Method of Moments (MoM) while the bioheat equation is solved using the finite element method. Developed electromagnetic thermal model has been applied in internal dosimetry of the human brain to assess the absorbed electromagnetic energy and consequent temperature rise due to exposure of 900 MHz plane wave.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adair, E.R., Petersen, R.: Biological effects of radiofrequency/microwave radiation. IEEE Trans. Microw. Theory Tech. 50(3), 953–962 (2002). doi:10.1109/22.989978

    Article  Google Scholar 

  2. Blinkov, S.M., Glezer, I.I.: The Human Brain in Figures and Tables: A Quantitative Handbook. Plenum Press, New York (1968)

    Google Scholar 

  3. Chew, W.C., Tong, M.S., Hu, B.: Integral Equation Methods for Electromagnetic and Elastic Waves. Morgan & Claypol Publishers, California (2009)

    Google Scholar 

  4. Cvetković, M., Čavka, D., Poljak, D., Peratta, A.: 3D FEM temperature distribution analysis of the human eye exposed to laser radiation. Adv. Comput. Methods Exp. Heat Transf. XI. WIT Trans. Eng. Sci. 68, 303–312 (2009)

    MATH  Google Scholar 

  5. Cvetković, M., Poljak, D.: An efficient integral equation based dosimetry model of the human brain. In: Proceedings of the International Symposium on Electromagnetic Compatibility (EMC EUROPE) 2014, Gothenburg, Sweden, 1–4 September, pp. 375–380 (2014)

    Google Scholar 

  6. Cvetković, M., Poljak, D., Peratta, A.: Thermal modelling of the human eye exposed to laser radiation. In: Proceedings of 2008 International Conference on Software, Telecommunications and Computer Networks, Split, Croatia, 25–26 September, pp. 16–20 (2008)

    Google Scholar 

  7. Cvetković, M., Poljak, D., Peratta, A.: FETD computation of the temperature distribution induced into a human eye by a pulsed laser. Prog. Electromagn. Res. PIER 120, 403–421 (2011)

    Article  Google Scholar 

  8. Gabriel, C.: Compilation of the dielectric properties of body tissues at RF and microwave frequencies. Technical report, Brooks Air Force Base, TX. Report: AL/OE-TR-1996-0037 (1996)

    Google Scholar 

  9. Harrington, R.: Boundary integral formulations for homogeneous material bodies. J. Electromagn. Waves Appl. 3(1), 1–15 (1989)

    Article  MathSciNet  Google Scholar 

  10. Hirata, A., Shiozawa, T.: Correlation of maximum temperature increase and peak SAR in the human head due to handset antennas. IEEE Trans. Microw. Theory Tech. 51(7), 1834–1841 (2003). doi:10.1109/TMTT.2003.814314

    Article  Google Scholar 

  11. International Commission on Non-Ionizing Radiation Protection: ICNIRP): Guidelines forlimiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300GHz). Health Physics 74(4), 494–522 (1998)

    Google Scholar 

  12. International Commission on Non-Ionizing Radiation Protection: ICNIRP): Guidelines forlimiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). Health Physics 99(6), 818–836 (2010). doi:10.1097/HP.0b013e3181f06c86

  13. McIntosh, R.L., Anderson, V.: A comprehensive tissue properties database provided for the thermal assessment of a human at rest. Biophys. Rev. Lett. 5(3), 129–151 (2010)

    Article  Google Scholar 

  14. Minkowycz, W.J., Sparrow, E.M., Murthy, J.Y.: Handbook of Numerical Heat Transfer, 2nd edn. Wiley, New York (2006)

    Google Scholar 

  15. Pennes, H.H.: Analysis of tissue and arterial blood temperatures in the resting human forearm. 1948. J. Appl. Physiol. 85(1), 5–34 (1998)

    Google Scholar 

  16. Poggio, A.J., Miller, E.K.: Integral equation solutions of three–dimensional scattering problems. In: Mittra, R. (ed.) Computer Techniques for Electromagnetics, Second Edition, Chap. 4, pp. 159–264. Hemisphere Publishing Corporation, Washington (1987)

    Google Scholar 

  17. Poljak, D., Peratta, A., Brebbia, C.A.: The boundary element electromagnetic-thermal analysis of human exposure to base station antennas radiation. Eng. Anal. Bound. Elem. 28(7), 763–770 (2004). doi:10.1016/j.enganabound.2004.02.004

    Article  MATH  Google Scholar 

  18. Rao, S., Wilton, D.R., Glisson, A.: Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propag. 30(3), 409–418 (1982)

    Article  Google Scholar 

  19. Silvester, P.P., Ferrari, R.L.: Finite Elements for Electrical Engineers, 3rd edn. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  20. Sukstanskii, A., Yablonskiy, D.: Theoretical model of temperature regulation in the brain during changes in functional activity. Proc. Natl. Acad. Sci. 103(32), 12144–12149 (2006). doi:10.1073/pnas.0604376103

    Article  Google Scholar 

  21. Sukstanskii, A.L., Yablonskiy, D.A.: An analytical model of temperature regulation in human head. J. Therm. Biol. 29(7), 583–587 (2004). doi:10.1016/j.jtherbio.2004.08.028

    Article  Google Scholar 

  22. Umashankar, K., Taflove, A., Rao, S.: Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects. IEEE Trans. Antennas Propag. 34(6), 758–766 (1986)

    Article  Google Scholar 

  23. Zhu, M., Ackerman, J.J.H., Sukstanskii, A.L., Yablonskiy, D.A.: How the body controls brain temperature: the temperature shielding effect of cerebral blood flow. J. Appl. Physiol. 101(5), 1481–1488 (2006). doi:10.1152/japplphysiol.00319.2006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Cvetković .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Cvetković, M., Poljak, D. (2016). The Electromagnetic–Thermal Dosimetry Model of the Human Brain. In: Silvestrov, S., Rančić, M. (eds) Engineering Mathematics I. Springer Proceedings in Mathematics & Statistics, vol 178. Springer, Cham. https://doi.org/10.1007/978-3-319-42082-0_7

Download citation

Publish with us

Policies and ethics