Skip to main content

Relationship Induced Multi-atlas Learning for Alzheimer’s Disease Diagnosis

  • Conference paper
  • First Online:
Medical Computer Vision: Algorithms for Big Data (MCV 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9601))

Included in the following conference series:

  • 843 Accesses

Abstract

Multi-atlas based methods using magnetic resonance imaging (MRI) have been recently proposed for automatic diagnosis of Alzheimer’s disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI). However, most existing multi-atlas based methods simply average or concatenate features generated from multiple atlases, which ignores the important underlying structure information of multi-atlas data. In this paper, we propose a novel relationship induced multi-atlas learning (RIML) method for AD/MCI classification. Specifically, we first register each brain image onto multiple selected atlases separately, through which multiple sets of feature representations can be extracted. To exploit the structure information of data, we develop a relationship induced sparse feature selection method, by employing two regularization terms to model the relationships among atlases and among subjects. Finally, we learn a classifier based on selected features in each atlas space, followed by an ensemble classification strategy to combine multiple classifiers for making a final decision. Experimental results on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database demonstrate that our method achieves significant performance improvement for AD/MCI classification, compared with several state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S., Habert, M.O., Chupin, M., Benali, H., Colliot, O., Initiative, A.D.N.: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. NeuroImage 56(2), 766–781 (2011)

    Article  Google Scholar 

  2. Wolz, R., Julkunen, V., Koikkalainen, J., Niskanen, E., Zhang, D.P., Rueckert, D., Soininen, H., Lötjönen, J., Alzheimer’s Disease Neuroimaging Initiative: Multi-method analysis of MRI images in early diagnostics of Alzheimer’s disease. PLOS ONE 6(10), e25446 (2011)

    Google Scholar 

  3. Koikkalainen, J., Lötjönen, J., Thurfjell, L., Rueckert, D., Waldemar, G., Soininen, H., Alzheimer’s Disease Neuroimaging Initiative: Multi-template tensor-based morphometry: application to analysis of Alzheimer’s disease. NeuroImage 56(3), 1134–1144 (2011)

    Google Scholar 

  4. Liu, M., Zhang, D., Shen, D.: View-centralized multi-atlas classification for Alzheimer’s disease diagnosis. Hum. Brain Mapp. 36, 1847–1865 (2015)

    Article  Google Scholar 

  5. Liu, M., Zhang, D.: Pairwise constraint-guided sparse learning for feature selection. IEEE Transactions on Cybernetics 46, 298–310 (2015)

    Article  Google Scholar 

  6. Liu, M., Zhang, D., Chen, S., Xue, H.: Joint binary classifier learning for ECOC-based multi-class classification. IEEE Trans. Pattern Anal. Mach. Intell. (2015)

    Google Scholar 

  7. Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17(1), 87–97 (1998)

    Article  Google Scholar 

  8. Wang, Y., Nie, J., Yap, P.T., Li, G., Shi, F., Geng, X., Guo, L., Shen, D., Initiative, A.D.N.: Knowledge-guided robust MRI brain extraction for diverse large-scale neuroimaging studies on humans and non-human primates. PLOS ONE 9(1), e77810 (2014)

    Article  Google Scholar 

  9. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)

    Article  Google Scholar 

  10. Fan, Y., Shen, D., Gur, R.C., Gur, R.E., Davatzikos, C.: COMPARE: classification of morphological patterns using adaptive regional elements. IEEE Trans. Med. Imaging 26(1), 93–105 (2007)

    Article  Google Scholar 

  11. Jenkinson, M., Smith, S.: A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5(2), 143–156 (2001)

    Article  Google Scholar 

  12. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Shen, D., Davatzikos, C.: Hammer: hierarchical attribute matching mechanism for elastic registration. IEEE Trans. Med. Imaging 21(11), 1421–1439 (2002)

    Article  Google Scholar 

  14. Goldszal, A.F., Davatzikos, C., Pham, D.L., Yan, M.X., Bryan, R.N., Resnick, S.M.: An image-processing system for qualitative and quantitative volumetric analysis of brain images. J. Comput. Assist. Tomogr. 22(5), 827–837 (1998)

    Article  Google Scholar 

  15. Min, R., Wu, G., Cheng, J., Wang, Q., Shen, D.: Multi-atlas based representations for Alzheimer’s disease diagnosis. Hum. Brain Mapp. 35(10), 5052–5070 (2014)

    Article  Google Scholar 

  16. Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 6, 583–598 (1991)

    Article  Google Scholar 

  17. Jin, Y., Shi, Y., Zhan, L., Gutman, B.A., de Zubicaray, G.I., McMahon, K.L., Wright, M.J., Toga, A.W., Thompson, P.M.: Automatic clustering of white matter fibers in brain diffusion mri with an application to genetics. Neuroimage 100, 75–90 (2014)

    Article  Google Scholar 

  18. Gao, Y., Wang, M., Tao, D., Ji, R., Dai, Q.: 3-d object retrieval and recognition with hypergraph analysis. IEEE Trans. Image Process. 21(9), 4290–4303 (2012)

    Article  MathSciNet  Google Scholar 

  19. Ji, R., Gao, Y., Hong, R., Liu, Q., Tao, D., Li, X.: Spectral-spatial constraint hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 52(3), 1811–1824 (2014)

    Article  Google Scholar 

  20. Liu, M., Miao, L., Zhang, D.: Two-stage cost-sensitive learning for software defect prediction. IEEE Trans. Reliab. 63(2), 676–686 (2014)

    Article  MathSciNet  Google Scholar 

  21. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. 103(1), 127–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodological) 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  23. Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation forest: a new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1619–1630 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by NIH grants (EB006733, EB008374, EB009634, MH100217, AG041721, and AG042599), the National Natural Science Foundation of China (Nos. 61422204, 61473149), the Jiangsu Natural Science Foundation for Distinguished Young Scholar (No. BK20130034), and the NUAA Fundamental Research Fund under grant number NE2013105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinggang Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Liu, M., Zhang, D., Adeli-Mosabbeb, E., Shen, D. (2016). Relationship Induced Multi-atlas Learning for Alzheimer’s Disease Diagnosis . In: Menze, B., et al. Medical Computer Vision: Algorithms for Big Data. MCV 2015. Lecture Notes in Computer Science(), vol 9601. Springer, Cham. https://doi.org/10.1007/978-3-319-42016-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42016-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42015-8

  • Online ISBN: 978-3-319-42016-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics