Skip to main content

Pixium Vision: First Clinical Results and Innovative Developments

  • Chapter
  • First Online:
Book cover Artificial Vision

Abstract

Visual prostheses or Vision Restoration Systems (VRSs) aim to provide blind patients with useful visual information for face, shape, and object recognition, as well as reading and independent locomotion. VRS are specifically designed for patients having lost their photoreceptors. The loss of photoreceptors can either result from hereditary genetic retinal diseases such as retinitis pigmentosa or more complex diseases such as age-related macular degeneration. Visual restoration is achieved by electrically stimulating the residual retinal circuit. After successful clinical trials by others, Pixium Vision and its partners are developing two VRS solutions for blind patients: an epi-retinal and a sub-retinal approach. This chapter describes the specificities of the epi-retinal IRISTM VRS that has obtained the European CE cerfication mark, and also discuss the associated innovations developed at the Vision Institute for future VRS models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bendali A, Agnes C, Meffert S, Forster V, Bongrain A, Arnault JC, Sahel JA, Offenhausser A, Bergonzo P, Picaud S. Distinctive glial and neuronal interfacing on nanocrystalline diamond. PLoS One. 2014;9:e92562.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bendali A, Hess LH, Seifert M, Forster V, Stephan AF, Garrido JA, Picaud S. Purified neurons can survive on peptide-free graphene layers. Adv Healthc Mater. 2013;2:929–33.

    Article  CAS  PubMed  Google Scholar 

  3. Bendali A, Rousseau L, Lissorgues G, Scorsone E, Djilas M, Degardin J, Dubus E, Fouquet S, Benosman R, Bergonzo P, Sahel JA, Picaud S. Synthetic 3D diamond-based electrodes for flexible retinal neuroprostheses: model, production and in vivo biocompatibility. Biomaterials. 2015;67:73–83.

    Article  CAS  PubMed  Google Scholar 

  4. Djilas M, Oles C, Lorach H, Bendali A, Degardin J, Dubus E, Lissorgues-Bazin G, Rousseau L, Benosman R, Ieng SH, Joucla S, Yvert B, Bergonzo P, Sahel J, Picaud S. Three-dimensional electrode arrays for retinal prostheses: modeling, geometry optimization and experimental validation. J Neural Eng. 2011;8:046020.

    Article  CAS  PubMed  Google Scholar 

  5. Feucht M, Laube T, Bornfeld N, Walter P, Velikay-Parel M, Hornig R, Richard G. Development of an epiretinal prosthesis for stimulation of the human retina. Der Ophthalmologe Zeitschrift der Deutschen Ophthalmologischen Gesellschaft. 2005;102:688–91.

    Article  CAS  PubMed  Google Scholar 

  6. Hadjinicolaou AE, Leung RT, Garrett DJ, Ganesan K, Fox K, Nayagam DA, Shivdasani MN, Meffin H, Ibbotson MR, Prawer S, O’Brien BJ. Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis. Biomaterials. 2012;33:5812–20.

    Article  CAS  PubMed  Google Scholar 

  7. Hébert C, Mazellier JP, Scorsone E, Mermoux M, Bergonzo P. Boosting the electrochemical properties of diamond electrodes using carbon nanotube scaffolds. Carbon. 2014;71:27–33.

    Article  Google Scholar 

  8. Hébert C, Scorsone E, Mermoux M, Bergonzo P. Porous diamond with high electrochemical performance. Carbon. 2015;90:102–9.

    Article  Google Scholar 

  9. Hornig R, Laube T, Walter P, Velikay-Parel M, Bornfeld N, Feucht M, Akguel H, Rossler G, Alteheld N, Lutke Notarp D, Wyatt J, Richard G. A method and technical equipment for an acute human trial to evaluate retinal implant technology. J Neural Eng. 2005;2:S129–34.

    Article  PubMed  Google Scholar 

  10. Hornig R, Zehnder T, Velikay-Parel M, Feucht M, Richard G. The IMI retina implant system. In: Humayun M, Weiland JD, Chader G, Greenbaum E, editors. Artifical sight: basic research, biomedical engineering, and clinical advances. New York: Springer; 2007.

    Google Scholar 

  11. Humayun MS, De Juan Jr E, Weiland JD, Dagnelie G, Katona S, Greenberg R, Suzuki S. Pattern electrical stimulation of the human retina. Vision Res. 1999;39:2569–76.

    Article  CAS  PubMed  Google Scholar 

  12. Humayun MS, Dorn JD, Ahuja AK, Caspi A, Filley E, Dagnelie G, Salzmann J, Santos A, Duncan J, Dacruz L, Mohand-Said S, Eliott D, McMahon MJ, Greenberg RJ. Preliminary 6 month results from the argus II epiretinal prosthesis feasibility study. Conf Proc IEEE Eng Med Biol Soc. 2009;1:4566–8.

    Google Scholar 

  13. Humayun MS, Dorn JD, da Cruz L, Dagnelie G, Sahel JA, Stanga PE, Cideciyan AV, Duncan JL, Eliott D, Filley E, Ho AC, Santos A, Safran AB, Arditi A, Del Priore LV, Greenberg RJ. Interim results from the international trial of second sight’s visual prosthesis. Ophthalmology. 2012;119:779–88.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Humayun MS, Prince M, De Juan Jr E, Barron Y, Moskowitz M, Klock IB, Milam AH. Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest Ophthalmol Vis Sci. 1999;40:143–8.

    CAS  PubMed  Google Scholar 

  15. Ivastinovic D, Langmann G, Nemetz W, Hornig R, Richard G, Velikay-Parel M. Clinical stability of a new method for fixation and explanation of epiretinal implants. Acta Ophthalmol. 2010;88:e285–6.

    Article  PubMed  Google Scholar 

  16. Joucla S, Yvert B. Improved focalization of electrical microstimulation using microelectrode arrays: a modeling study. PLoS One. 2009;4:e4828.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Keseru M, Feucht M, Bornfeld N, Laube T, Walter P, Rossler G, Velikay-Parel M, Hornig R, Richard G. Acute electrical stimulation of the human retina with an epiretinal electrode array. Acta Ophthalmol. 2012;90:e1–8.

    Article  PubMed  Google Scholar 

  18. Lorach H, Benosman R, Marre O, Ieng SH, Sahel JA, Picaud S. Artificial retina: the multichannel processing of the mammalian retina achieved with a neuromorphic asynchronous light acquisition device. J Neural Eng. 2012;9:066004.

    Article  PubMed  Google Scholar 

  19. Lorach H, Goetz G, Smith R, Lei X, Mandel Y, Kamins T, Mathieson K, Huie P, Harris J, Sher A, Palanker D. Photovoltaic restoration of sight with high visual acuity. Nat Med. 2015;21:476–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Majji AB, Humayun MS, Weiland JD, Suzuki S, D’Anna SA, De Juan Jr E. Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs. Invest Ophthalmol Vis Sci. 1999;40:2073–81.

    CAS  PubMed  Google Scholar 

  21. Mathieson K, Loudin J, Goetz G, Huie P, Wang L, Kamins T, Galambos L, Smith R, Harris JS, Sher A, Palanker D. Photovoltaic retinal prosthesis with high pixel density. Nat Photonics. 2012;6:391–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matteucci PB, Chen SC, Tsai D, Dodds CW, Dokos S, Morley JW, Lovell NH, Suaning GJ. Current steering in retinal stimulation via a quasimonopolar stimulation paradigm. Invest Ophthalmol Vis Sci. 2013;54:4307–20.

    Article  PubMed  Google Scholar 

  23. Menzel-Severing J, Laube T, Brockmann C, Bornfeld N, Mokwa W, Mazinani B, Walter P, Roessler G. Implantation and explantation of an active epiretinal visual prosthesis: 2-year follow-up data from the EPIRET3 prospective clinical trial. Eye (Lond). 2012;26:501–9.

    Article  CAS  Google Scholar 

  24. Palanker D, Huie P, Vankov A, Aramant R, Seiler M, Fishman H, Marmor M, Blumenkranz M. Migration of retinal cells through a perforated membrane: implications for a high-resolution prosthesis. Invest Ophthalmol Vis Sci. 2004;45:3266–70.

    Article  PubMed  Google Scholar 

  25. Piret G, Hebert C, Mazellier JP, Rousseau L, Scorsone E, Cottance M, Lissorgues G, Heuschkel MO, Picaud S, Bergonzo P, Yvert B. 3D-nanostructured boron-doped diamond for microelectrode array neural interfacing. Biomaterials. 2015;53:173–83.

    Article  CAS  PubMed  Google Scholar 

  26. Posch C, Matolin D, Wohlgenannt R. A QVGA 143 dB dynamic range frame-free PWM image sensor with lossless pixel-level video compression and time-domain CDS. Solid-State Circuits IEEE J. 2011;46:259–75.

    Article  Google Scholar 

  27. Posch C, Serrano-Gotarredona T, Linares-Barranco B, Delbruck T. Retinomorphic event-based vision sensors: bioinspired cameras with spiking output. Proc IEEE. 2014;102:1470–84.

    Article  Google Scholar 

  28. Richard G, Feucht M, Bornfeld N, Laube T, Rössler G, Velikay-Parel M, Hornig R. Multicenter study on acute electrical stimulation of the human retina with an epiretinal implant: clinical results in 20 patients. Invest Ophthalmol Vis Sci. 2005;46:1143.

    Google Scholar 

  29. Richard G, Keserue M, Zeitz O, Hornig R. Surgical aspects of a long-term implantation of a wireless chip in blind patients. I. In: Proceedings 9th EURETINA Congress Nice from 14 to 17 May 2009. p. 6:8–6:10.

    Google Scholar 

  30. Walter P, Szurman P, Vobig M, Berk H, Ludtke-Handjery HC, Richter H, Mittermayer C, Heimann K, Sellhaus B. Successful long-term implantation of electrically inactive epiretinal microelectrode arrays in rabbits. Retina (Philadelphia Pa). 1999;19:546–52.

    Article  CAS  Google Scholar 

  31. Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A, Gabel VP, Gekeler F, Greppmaier U, Harscher A, Kibbel S, Koch J, Kusnyerik A, Peters T, Stingl K, Sachs H, Stett A, Szurman P, Wilhelm B, Wilke R. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc R Soc. 2011;B 278:1489–97.

    Article  Google Scholar 

Download references

Acknowledgements

The Vision Institute was supported by INSERM, UPMC (Paris VI), Foundation Fighting Blindness, the Fédération des Aveugles de France, Fondation de la Recherche Médicale (grant number DBC20101021013), the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 280433 (Neurocare project) and under the Graphene Flagship (Contract N° 604391), the LabEx LIFESENSES (ANR-10-LABX-65), which was supported by French state funds managed by the ANR within the Investissements dAvenir programme (ANR-11-IDEX-0004-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Picaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hornig, R. et al. (2017). Pixium Vision: First Clinical Results and Innovative Developments. In: Gabel, V. (eds) Artificial Vision. Springer, Cham. https://doi.org/10.1007/978-3-319-41876-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41876-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41874-2

  • Online ISBN: 978-3-319-41876-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics