Skip to main content

Dynamic Testing and Constitutive Modelling of NBR Rubbers

  • Conference paper
  • First Online:

Abstract

The present work describes the compression behaviour of NBR rubber. Experimental tests have been conducted both in dynamic conditions. The latter ones, performed by a polymeric Split Hopkinson Bar, range from 100 to 500 1/s of strain rate. The long lasting pressure wave generated by the adopted SHB permitted to obtain a relatively high strain level in all the tests, up to 0.7–1.0 logarithmic strain. The experimental stress-strain curves were used to fit hyperelastic-perfect viscoelastic constitutive models; in particular, the Ogden and Mooney-Rivlin models were used for the hyperelasticity, while the Prony series was used for the viscoelastic part.

The analyses permitted to evaluate the dependency of the storage and loss moduli of NBR as functions of frequency and strain amplitude.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hu, W., Huang, X., Zhang, F., Niu, W., Chen, Y.: Compressive responses of vulcanized rubber under quasi-static and high strain rate conditions. In: Proceedings of ICEM15, 15th International Conference on Experimental Mechanics, Porto, Portugal, 22–27 July (2012)

    Google Scholar 

  2. Gent, A.N.: Engineering with Rubber: How to Design Rubber Components, 2nd edn. Hanser, Munich (2001)

    Google Scholar 

  3. Hoo Fatt, M.S., Ouyang, X.: Integral-based constitutive equation for rubber at high strain rates. Int. J. Solids Struct. 44(20), 6491–6506 (2007)

    Article  MATH  Google Scholar 

  4. Sasso, M., Chiappini, G., Rossi, M., Cortese, L., Mancini, E.: Visco-hyper-pseudo-elastic characterization of a fluoro-silicone rubber. Exp. Mech. 54(3), 315–328 (2014)

    Article  Google Scholar 

  5. Song, B., Chen, W.: One-dimensional dynamic compressive behavior of EPDM rubber. Trans. ASME J. Eng. Mater. Technol. 125, 294–301 (2003)

    Article  MathSciNet  Google Scholar 

  6. Song, B., Chen, W.: Split Hopkinson Kolsky Bar: Design, Testing and Applications. Springer, New York (2010)

    MATH  Google Scholar 

  7. Wang, L., Labibes, K., Azari, Z., Pluvinage, G.: Generalization of split Hopkinson bar technique to use viscoelastic bars. Int. J. Impact Eng. 15(5), 669–686 (1994)

    Article  Google Scholar 

  8. Cronin, D., Salisbury, C., Horst, C.: High rate characterization of low impedance materials using a polymeric split hopkinson pressure bar. In: Proceedings of SEM Annual Conference, St. Louis (MO), USA (2006)

    Google Scholar 

  9. Lim, J., Hong, J., Chen, W.W., Weerasooriya, T.: Mechanical response of pig skin under dynamic tensile loading. Int. J. Impact Eng. 38(2–3), 130–135 (2011)

    Article  Google Scholar 

  10. Bao, Y., Tang, L., Liu, Y., Liu, Z., Jiang, Z., Fang, D.: Localized deformation in aluminium foam during middle speed Hopkinson bar impact tests. Mater. Sci. Eng. A 560, 734–743 (2013)

    Article  Google Scholar 

  11. Curry, R., Cloete, T., Govender, R.: Implementation of viscoelastic Hopkinson bars. In: EPJ Web of Conferences, vol. 26. EDP Sciences (2012)

    Google Scholar 

  12. Cheng, Z., Crandall, J., Pilkey, W.: Wave dispersion and attenuation in viscoelastic split Hopkinson pressure bar. Shock Vib. 5, 307–315 (1998)

    Article  Google Scholar 

  13. Butt, H., Xue, P.: Determination of the wave propagation coefficient of viscoelastic SHPB: significance for characterization of cellular materials. Int. J. Impact Eng. 74, 83–91 (2014)

    Article  Google Scholar 

  14. Schapery, R.A.: On the characterization of nonlinear viscoelastic materials. Polym. Eng. Sci. 9(4), 295–310 (1969)

    Article  Google Scholar 

  15. Sasso, M., Antonelli, M.G., Mancini, E., Radoni, M., Amodio, D.: Experimental and numerical analysis of pressure waves propagation in a viscoelastic Hopkinson Bar. In: Conference Proceedings of the Society for Experimental Mechanics Series, vol. 85, pp. 259–267 (2016)

    Google Scholar 

  16. Mancini, E., Sasso, M., Rossi, M., Chiappini, G., Newaz, G., Amodio, D.: Design of an innovative system for wave generation in direct tension-compression split Hopkinson Bar. J. Dyn. Behav. Mater. 1, 201–213 (2015)

    Article  Google Scholar 

  17. Sasso, M., Palmieri, G., Chiappini, G., Amodio, D.: Characterization of hyperelastic rubber-like materials by biaxial and uniaxial stretching tests based on optical methods. Polym. Test. 27, 995–1004 (2008)

    Article  Google Scholar 

  18. Mooney, M.: A theory of large elastic deformation. J. Appl. Phys. 11(9), 582–592 (1940)

    Article  MATH  Google Scholar 

  19. Treolar, L.R.G.: Strains in an inflated rubber sheet and the mechanism of bursting. Inst. Rubber Ind. Trans. 19, 201–212 (1944)

    Google Scholar 

  20. Rivlin, R.S.: Large elastic deformations of isotropic materials IV. Further developments of the general theory. Philos. Trans. R. Soc. Lond. A 241(835), 379–397 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  21. Simo, J.C.: On fully three-dimensional finite strain viscoelastic damage model: formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 60, 153–173 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sasso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Antonelli, M.G., Lonzi, B., Mancini, E., Martarelli, M., Sasso, M. (2017). Dynamic Testing and Constitutive Modelling of NBR Rubbers. In: Antoun, B., et al. Challenges in Mechanics of Time Dependent Materials, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-41543-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41543-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41542-0

  • Online ISBN: 978-3-319-41543-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics