Skip to main content

AutoMOMML: Automatic Multi-objective Modeling with Machine Learning

  • Conference paper
  • First Online:
Book cover High Performance Computing (ISC High Performance 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9697))

Included in the following conference series:

Abstract

In recent years, automatic data-driven modeling with machine learning (ML) has received considerable attention as an alternative to analytical modeling for many modeling tasks. While ad hoc adoption of ML approaches has obtained success, the real potential for automation in data-driven modeling has yet to be achieved. We propose AutoMOMML, an end-to-end, ML-based framework to build predictive models for objectives such as performance, and power. The framework adopts statistical approaches to reduce the modeling complexity and automatically identifies and configures the most suitable learning algorithm to model the required objectives based on hardware and application signatures. The experimental results using hardware counters as application signatures show that the median prediction error of performance, processor power, and DRAM power models are 13 %, 2.3 %, and 8 %, respectively.

I’m an employee of the US Government and transfer the rights to the extent transferable (Title 17 §105 U.S.C. applies)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We will make the packages and the framework available on our website (http://www.sdsc.edu/~tiwari/AutoMOMML) at the time of publication.

References

  1. Ailamaki, A., DeWitt, D.J., Hill, M.D., Wood, D.A.: DBMSs on a modern processor: where does time go? In: Proceedings of the International Conference on Very Large Data Bases, VLDB 1999, pp. 266–277, San Francisco (1999)

    Google Scholar 

  2. Azizi, O., Mahesri, A., Lee, B.C., Patel, S.J., Horowitz, M.: Energy-performance tradeoffs in processor architecture and circuit design: a marginal cost analysis. In: ACM SIGARCH Computer Architecture News, vol. 38, pp. 26–36. ACM (2010)

    Google Scholar 

  3. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L., Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon, H.D., Venkatakrishnan, V., Weeratunga, S.K.: The NAS parallel benchmarks-summary and preliminary results. In: Proceedings of ACM/IEEE Conference on Supercomputing, SC 1991, New York (1991)

    Google Scholar 

  4. Balaprakash, P., Tiwari, A., Wild, S.M.: Multi objective optimization of HPC kernels for performance, power, and energy. In: Jarvis, S.A., Wright, S.A., Hammond, S.D. (eds.) PMBS 2013. LNCS, vol. 8551, pp. 239–260. Springer, Heidelberg (2014)

    Google Scholar 

  5. Balaprakash, P., Wild, S., Norris, B.: SPAPT: search problems in automatic performance tuning. Proc. Comp. Sci. 9, 1959–1968 (2012)

    Article  Google Scholar 

  6. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(1), 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Bergstra, J., Pinto, N., Cox, D.: Machine learning for predictive auto-tuning with boosted regression trees. In: Innovative Parallel Computing (InPar 2012), pp. 1–9. IEEE (2012)

    Google Scholar 

  8. Berry, M., Potok, T.E., Balaprakash, P., Hoffmann, H., Vatsavai, R., Prabhat: Machine learning and understanding for intelligent extreme scale scientific computing and discovery. Technical report (2015)

    Google Scholar 

  9. Bertran, R., González, M., Martorell, X., Navarro, N., Ayguadé, E.: A systematic methodology to generate decomposable and responsive power models for CMPs. IEEE Trans. Comp. 62(7), 1289–1302 (2013)

    Article  MathSciNet  Google Scholar 

  10. Bircher, W.L., John, L.K.: Complete system power estimation: a trickle-down approach based on performance events. In: International Symposium on Performance Analysis of Systems and Software, ISPASS 2007, pp. 158–168. IEEE (2007)

    Google Scholar 

  11. Bishop, C.M.: Pattern Recognition and Machine Learning, vol. 1. Springer, New York (2006)

    MATH  Google Scholar 

  12. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cavazos, J., Fursin, G., Agakov, F., Bonilla, E., O’Boyle, M.F., Temam, O.: Rapidly selecting good compiler optimizations using performance counters. In: IEEE International Symposium on Code Generation and Optimization (CGO 2007), pp. 185–197 (2007)

    Google Scholar 

  14. Chen, C., Chame, J., Hall, M.W.: CHiLL: a framework for composing high-level loop transformations. TR 08–897, Univ. of Southern California, June 2008

    Google Scholar 

  15. Chen, T., Guo, Q., Tang, K., Temam, O., Xu, Z., Zhou, Z.-H., Chen, Y.: Archranker: a ranking approach to design space exploration. In: ACM/IEEE 41st International Symposium on Computer Architecture (ISCA), pp. 85–96. IEEE (2014)

    Google Scholar 

  16. David, H., Gorbatov, E., Hanebutte, U.R., Khanna, R., Le, C.: Rapl: memory power estimation and capping. In: 2010 ACM/IEEE International Symposium on Low-Power Electronics and Design (ISLPED), pp. 189–194, August 2010

    Google Scholar 

  17. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fursin, G., Miranda, C., Temam, O., Namolaru, M., Yom-Tov, E., Zaks, A., Mendelson, B., Bonilla, E., Thomson, J., Leather, H., et al.: MILEPOST GCC: machine learning based research compiler. In: GCC Summit (2008)

    Google Scholar 

  19. Ganapathi, A., Kuno, H., Dayal, U., Wiener, J.L., Fox, A., Jordan, M., Patterson, D.: Predicting multiple metrics for queries: better decisions enabled by machine learning. In: IEEE International Conference on Data Engineering (ICDE 2009), pp. 592–603 (2009)

    Google Scholar 

  20. Genuer, R., Poggi, J.-M., Tuleau-Malot, C.: Variable selection using random forests. Pattern Recogn. Lett. 31(14), 2225–2236 (2010)

    Article  Google Scholar 

  21. Hähnel, M., Döbel, B., Völp, M., Härtig, H.: Measuring energy consumption for short code paths using RAPL. SIGMETRICS Perform. Eval. Rev. 40(3), 13–17 (2012)

    Article  Google Scholar 

  22. Hearst, M.A., Dumais, S.T., Osman, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intel. Sys. App. 13(4), 18–28 (1998)

    Article  Google Scholar 

  23. Heroux, M.A., Doerfler, D.W., Crozier, P.S., Willenbring, J.M., Edwards, H.C., Williams, A., Rajan, M., Keiter, E.R., Thornquist, H.K., Numrich, R.W.: Improving performance via mini-applications. Sandia National Laboratories. Technical report SAND-5574 (2009)

    Google Scholar 

  24. Isci, C., Martonosi, M.: Runtime power monitoring in high-end processors: methodology and empirical data. In: International Symposium on Microarchitecture, MICRO 36, p. 93. IEEE Computer Society, Washington, DC (2003)

    Google Scholar 

  25. Lim, M.Y., Porterfield, A., Fowler, R.: Softpower: fine-grain power estimations using performance counters. In: Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing, pp. 308–311. ACM (2010)

    Google Scholar 

  26. London, K., Moore, S., Mucci, P., Seymour, K., Luczak, R.: The PAPI cross-platform interface to hardware performance counters. In: Department of Defense Users’ Group Conference Proceedings, pp. 18–21 (2001)

    Google Scholar 

  27. Magni, A., Dubach, C., O’Boyle, M.F.P.: A large-scale cross-architecture evaluation of thread-coarsening. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC 2013 (2013)

    Google Scholar 

  28. McVoy, L., Staelin, C.: lmbench: portable tools for performance analysis. In: USENIX Annual Technical Conference, ATEC 1996, p. 23. USENIX Association, Berkeley (1996)

    Google Scholar 

  29. Norris, B., Hartono, A., Gropp, W.: Annotations for productivity and performance portability. In: Petascale Computing: Algorithms and Applications, pp. 443–462. Chapman & Hall (2007)

    Google Scholar 

  30. Park, E., Cavazos, J., Pouchet, L.-N., Bastoul, C., Cohen, A., Sadayappan, P.: Predictive modeling in a polyhedral optimization space. Int. J. Parallel Program. 41(5), 704–750 (2013)

    Article  Google Scholar 

  31. Pouchet, L.-N.: PolyBench: the polyhedral benchmark suite (2012). http://www.cse.ohio-state.edu/pouchet/software/polybench/

  32. Schöne, R., Hackenberg, D., Molka, D.: Memory performance at reduced CPU clock speeds: an analysis of current x86 64 processors. In: Proceedings of USENIX Conference on Power-Aware Computing and Systems (2012)

    Google Scholar 

  33. Spillinger, O., Eliahu, D., Fox, A., Demmel, J.: Matrix multiplication algorithm selection with support vector machines (2015)

    Google Scholar 

  34. Tiwari, A., Laurenzano, M.A., Carrington, L., Snavely, A.: Modeling power and energy usage of HPC kernels. In: IEEE International Conference on Parallel and Distributed Processing Symposium Workshops (IPDPSW 2012), pp. 990–998 (2012)

    Google Scholar 

  35. Tiwari, A., Peraza, J., Laurenzano, M., Carrington, L., Snavely, A.: Green queue: customized large-scale clock frequency scaling. In: International Conference on Cloud and Green Computing, CGC 2012 (2012)

    Google Scholar 

  36. Tofallis, C.: A better measure of relative prediction accuracy for model selection and model estimation. J. Oper. Res. Soc. 66, 1352–1362 (2014)

    Article  Google Scholar 

  37. Wu, X., Lively, C., Taylor, V., Chang, H.-C., Su, C.-Y., Cameron, K., Moore, S., Terpstra, D., Weaver, V.: Mummi: multiple metrics modeling infrastructure. In: ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), pp. 289–295 (2013)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research program under contract number DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanna Balaprakash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland (outside the US)

About this paper

Cite this paper

Balaprakash, P., Tiwari, A., Wild, S.M., Carrington, L., Hovland, P.D. (2016). AutoMOMML: Automatic Multi-objective Modeling with Machine Learning. In: Kunkel, J., Balaji, P., Dongarra, J. (eds) High Performance Computing. ISC High Performance 2016. Lecture Notes in Computer Science(), vol 9697. Springer, Cham. https://doi.org/10.1007/978-3-319-41321-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41321-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41320-4

  • Online ISBN: 978-3-319-41321-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics