Skip to main content

Partitioned Fluid–Structure–Acoustics Interaction on Distributed Data: Numerical Results and Visualization

  • Conference paper
  • First Online:
Book cover Software for Exascale Computing - SPPEXA 2013-2015

Abstract

We present a coupled simulation approach for fluid–structure–acoustic interactions (FSAI) as an example for strongly surface coupled multi-physics problems. In addition to the multi-physics character, FSAI feature multi-scale properties as a further challenge. In our partitioned approach, the problem is split into spatially separated subdomains interacting via coupling surfaces. Within each subdomain, scalable, single-physics solvers are used to solve the respective equation systems. The surface coupling between them is realized with the scalable open-source coupling tool preCICE described in the “Partitioned Fluid–Structure–Acoustics Interaction on Distributed Data: Coupling via preCICE”. We show how this approach enables the use of existing solvers and present the overall scaling behavior for a three-dimensional test case with a bending tower generating acoustic waves. We run this simulation with different solvers demonstrating the performance of various solvers and the flexibility of the partitioned approach with the coupling tool preCICE. An efficient and scalable in-situ visualization reducing the amount of data in place at the simulation processors before sending them over the network or to a file system completes the simulation environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.precice.org

  2. 2.

    http://www.openfoam.org/

  3. 3.

    University of Siegen, STS

  4. 4.

    http://www.extend-project.de/

  5. 5.

    http://www.openfoam.org/

  6. 6.

    http://bzip.org/

References

  1. Blom, D.S., Krupp, V., van Zuijlen, A.H., Klimach, H., Roller, S., Bijl, H.: On parallel scalability aspects of strongly coupled partitioned fluid-structure-acoustics interaction. In: VI International Conference on Computational Methods for Coupled Problems in Science and Engineering – COUPLED PROBLEMS 2015 (2015)

    Google Scholar 

  2. Bungartz, H.J., Klimach, H., Krupp, V., Lindner, F., Mehl, M., Roller, S., Uekermann, B.: Fluid-acoustics interaction on massively parallel systems. In: Mehl, M., Bischoff, M., Schäfer, M. (eds.) International Workshop on Computational Engineering CE 2014. Lecture Notes in Computational Science and Engineering, pp. 151–165. Springer, Heidelberg/Berlin (2015)

    Google Scholar 

  3. Cardiff, P., Karač, A., Ivanković, A.: A large strain finite volume method for orthotropic bodies with general material orientations. Comput. Method. Appl. Mech. Eng. 268, 318–335 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Darwish, M., Moukalled, F.: A fully coupled Navier-Stokes solver for fluid flow at all speeds. Numer. Heat Tr A.-Appl. 65 (5), 410–444 (2014)

    Article  Google Scholar 

  5. Darwish, M., Sraj, I., Moukalled, F.: A coupled finite volume solver for the solution of incompressible flows on unstructured grids. J. Comput. Phys. 228 (1), 180–201 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. FASTEST-Manual: Fachgebiet fr Numerische Berechnungsverfahren im Maschinenbau, Technische Universitt Darmstadt, 1st edn. (2005)

    Google Scholar 

  7. Fernandes, O., Frey, S., Sadlo, F., Ertl, T.: Space-time volumetric depth images for in-situ visualization. In: Proceedings of IEEE 4th Symposium on Large Data Analysis and Visualization (LDAV), pp. 59–65 (2014)

    Google Scholar 

  8. Frey, S., Sadlo, F., Ertl, T.: Explorable volumetric depth images from raycasting. In: Proceedings of the Conference on Graphics, Patterns and Images, pp. 123–130 (2013)

    Google Scholar 

  9. Hardin, J., Pope, D.: An acoustic/viscous splitting technique for computational aeroacoustics. Theor. Comput. Fluid Dyn. 6, 323–340 (1994)

    Article  MATH  Google Scholar 

  10. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, 1 edn. Springer, New York (2007)

    MATH  Google Scholar 

  11. Kornhaas, M., Schäfer, M., Sternel, D.: Efficient numerical simulation of aeroacoustics for low mach number flows interacting with structures. Comput. Mech. 55 (6), 1143–1154 (2015). http://dx.doi.org/10.1007/s00466-014-1114-1

    Article  MATH  Google Scholar 

  12. Lighthill, M.: On sound generated aerodynamically. I. General theory. Proc. R. Soc. A 211, 564–587 (1952)

    MathSciNet  MATH  Google Scholar 

  13. Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. Div.-Asce. 85 (7), 67–94 (1959)

    Google Scholar 

  14. Roller, S., Bernsdorf, J., Klimach, H., Hasert, M., Harlacher, D., Cakircali, M., Zimny, S., Masilamani, K., Didinger, L., Zudrop, J.: An adaptable simulation framework based on a linearized octree. In: Resch, M., Wang, X., Bez, W., Focht, E., Kobayashi, H., Roller, S. (eds.) High Performance Computing on Vector Systems 2011, pp. 93–105. Springer, Berlin/Heidelberg (2012)

    Google Scholar 

  15. Shen, W.Z., Sørensen, J.N.: Aeroacoustic modelling of low-speed flows. Theor. Comput. Fluid Dyn. 13, 271–289 (1999)

    Article  MATH  Google Scholar 

  16. Shen, W., Sørensen, J.: Comment on the aeroacoustic formulation of Hardin and Pope. AIAA J. 37 (1), 141–143 (1999)

    Article  Google Scholar 

  17. Taylor, R.L.: FEAP – A Finite Element Analysis Program – Version 7.5 User Manual. University of California (2003). citeseer.ist.psu.edu/taylor03feap.html

  18. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 2 edn. Springer, Berlin/Heidelberg (1999)

    Book  MATH  Google Scholar 

  19. Uekermann, B., Bungartz, H.J., Gatzhammer, B., Mehl, M.: A parallel, black-box coupling for fluid-structure interaction. In: Idelsohn, S., Papadrakakis, M., Schrefler, B. (eds.) Computational Methods for Coupled Problems in Science and Engineering, COUPLED PROBLEMS 2013. Stanta Eulalia, Ibiza (2013). http://congress.cimne.com/coupled2013/proceedings/full/p559.pdf

    Google Scholar 

Download references

Acknowledgements

The financial support of the priority program 1648 Software for Exascale Computing (www.sppexa.de) of the German Research Foundation and of the Institute for Advanced Study (www.tum-ias.de) of the Technical University of Munich is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verena Krupp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Blom, D. et al. (2016). Partitioned Fluid–Structure–Acoustics Interaction on Distributed Data: Numerical Results and Visualization. In: Bungartz, HJ., Neumann, P., Nagel, W. (eds) Software for Exascale Computing - SPPEXA 2013-2015. Lecture Notes in Computational Science and Engineering, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-319-40528-5_12

Download citation

Publish with us

Policies and ethics