Skip to main content

Orlicz Integrability of Additive Functionals of Harris Ergodic Markov Chains

  • Conference paper
  • First Online:
High Dimensional Probability VII

Part of the book series: Progress in Probability ((PRPR,volume 71))

  • 1065 Accesses

Abstract

For a Harris ergodic Markov chain (X n ) n ≥ 0, on a general state space, started from the small measure or from the stationary distribution, we provide optimal estimates for Orlicz norms of sums i = 0 τ f(X i ), where τ is the first regeneration time of the chain. The estimates are expressed in terms of other Orlicz norms of the function f (with respect to the stationary distribution) and the regeneration time τ (with respect to the small measure). We provide applications to tail estimates for additive functionals of the chain (X n ) generated by unbounded functions as well as to classical limit theorems (CLT, LIL, Berry-Esseen).

Mathematics Subject Classification (2010). Primary 60J05, 60E15; Secondary 60K05, 60F05

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Adamczak, A tail inequality for suprema of unbounded empirical processes with applications to Markov chains. Electron. J. Probab. 13 (34), 1000–1034 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Adamczak, W. Bednorz, Exponential concentration inequalities for additive functionals of Markov chains. ESAIM: Probab. Stat. 19, 440–481 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Adamczak, A.E. Litvak, A. Pajor, N. Tomczak-Jaegermann, Restricted isometry property of matrices with independent columns and neighborly polytopes by random sampling. Constr. Approx. 34 (1), 61–88 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. K.B. Athreya, P. Ney, A new approach to the limit theory of recurrent Markov chains. Trans. Am. Math. Soc. 245, 493–501 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. P.H. Baxendale, Renewal theory and computable convergence rates for geometrically ergodic Markov chains. Ann. Appl. Probab. 15 (1B), 700–738 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Bednorz, K. Łatuszyński, R. Latała, A regeneration proof of the central limit theorem for uniformly ergodic Markov chains. Electron. Commun. Probab. 13, 85–98 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Bertail, S. Clémençon, Sharp bounds for the tails of functionals of Markov chains. Teor. Veroyatn. Primen. 54 (3), 609–619 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Bolthausen, The Berry-Esseen theorem for functionals of discrete Markov chains. Z. Wahrsch. Verw. Gebiete 54 (1), 59–73 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Bolthausen, The Berry-Esseén theorem for strongly mixing Harris recurrent Markov chains. Z. Wahrsch. Verw. Gebiete 60 (3), 283–289 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. R.C. Bradley, On quantiles and the central limit question for strongly mixing sequences. J. Theor. Probab. 10 (2), 507–555 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. R.C. Bradley, Jr., Information regularity and the central limit question. Rocky Mt. J. Math. 13 (1), 77–97 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. X. Chen, Limit theorems for functionals of ergodic Markov chains with general state space. Mem. Am. Math. Soc. 139 (664), xiv+203 (1999)

    Google Scholar 

  13. S.J.M. Clémençon, Moment and probability inequalities for sums of bounded additive functionals of regular Markov chains via the Nummelin splitting technique. Stat. Probab. Lett. 55 (3), 227–238 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Douc, G. Fort, E. Moulines, P. Soulier, Practical drift conditions for subgeometric rates of convergence. Ann. Appl. Probab. 14 (3), 1353–1377 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Douc, A. Guillin, E. Moulines, Bounds on regeneration times and limit theorems for subgeometric Markov chains. Ann. Inst. Henri Poincaré Probab. Stat. 44 (2), 239–257 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Doukhan, P. Massart, E. Rio, The functional central limit theorem for strongly mixing processes. Ann. Inst. Henri Poincaré Probab. Stat. 30 (1), 63–82 (1994)

    MathSciNet  MATH  Google Scholar 

  17. U. Einmahl, D. Li, Characterization of LIL behavior in Banach space. Trans. Am. Math. Soc. 360 (12), 6677–6693 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. O. Häggström, On the central limit theorem for geometrically ergodic Markov chains. Probab. Theory Relat. Fields 132 (1), 74–82 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Hitczenko, S.J. Montgomery-Smith, K. Oleszkiewicz, Moment inequalities for sums of certain independent symmetric random variables. Stud. Math. 123 (1), 15–42 (1997)

    MathSciNet  MATH  Google Scholar 

  20. G.L. Jones, On the Markov chain central limit theorem. Probab. Surv. 1, 299–320 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. I. Kontoyiannis, S.P. Meyn, Spectral theory and limit theorems for geometrically ergodic Markov processes. Ann. Appl. Probab. 13 (1), 304–362 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. M.A. Krasnoselskiĭ, J.B. Rutickiĭ, Convex Functions and Orlicz Spaces. Translated from the first Russian edition by Leo F. Boron (P. Noordhoff, Groningen, 1961)

    Google Scholar 

  23. K. Łatuszyński, B. Miasojedow, W. Niemiro, Nonasymptotic bounds on the mean square error for MCMC estimates via renewal techniques, in Monte Carlo and Quasi-Monte Carlo Methods 2010. Springer Proceedings in Mathematics and Statistics, vol. 23 (Springer, Heidelberg, 2012), pp. 539–555

    Google Scholar 

  24. K. Łatuszyński, B. Miasojedow, W. Niemiro, Nonasymptotic bounds on the estimation error of MCMC algorithms. Bernoulli 19 (5A), 2033–2066 (2014)

    MathSciNet  MATH  Google Scholar 

  25. L. Maligranda, Orlicz Spaces and Interpolation. Seminários de Matemática [Seminars in Mathematics], vol. 5 (Universidade Estadual de Campinas, Campinas, 1989)

    Google Scholar 

  26. L. Maligranda, E. Nakai, Pointwise multipliers of Orlicz spaces. Arch. Math. 95 (3), 251–256 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. F. Merlevède, M. Peligrad, E. Rio, A Bernstein type inequality and moderate deviations for weakly dependent sequences. Probab. Theory Relat. Fields 151 (3–4), 435–474 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. S. Meyn, R.L. Tweedie, Markov Chains and Stochastic Stability, 2nd edn. (Cambridge University Press, Cambridge, 2009)

    Book  MATH  Google Scholar 

  29. S.J. Montgomery-Smith, Comparison of Orlicz-Lorentz spaces. Stud. Math. 103 (2), 161–189 (1992)

    MathSciNet  MATH  Google Scholar 

  30. E. Nummelin, A splitting technique for Harris recurrent Markov chains. Z. Wahrsch. Verw. Gebiete 43 (4), 309–318 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  31. E. Nummelin, General Irreducible Markov Chains and Nonnegative Operators. Cambridge Tracts in Mathematics, vol. 83 (Cambridge University Press, Cambridge, 1984)

    Google Scholar 

  32. E. Nummelin, P. Tuominen, Geometric ergodicity of Harris recurrent Markov chains with applications to renewal theory. Stoch. Process. Appl. 12 (2), 187–202 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  33. E. Nummelin, P. Tuominen, The rate of convergence in Orey’s theorem for Harris recurrent Markov chains with applications to renewal theory. Stoch. Process. Appl. 15 (3), 295–311 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  34. R. O’Neil, Fractional integration in Orlicz spaces. I. Trans. Am. Math. Soc., 115, 300–328 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  35. J.W. Pitman, An identity for stopping times of a Markov process, in Studies in Probability and Statistics (Papers in Honour of Edwin J. G. Pitman) (North-Holland, Amsterdam, 1976), pp. 41–57

    Google Scholar 

  36. J.W. Pitman, Occupation measures for Markov chains. Adv. Appl. Probab. 9 (1), 69–86 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  37. M.M. Rao, Z.D. Ren, Theory of Orlicz Spaces. Monographs and Textbooks in Pure and Applied Mathematics, vol. 146 (Marcel Dekker, New York, 1991)

    Google Scholar 

  38. E. Rio, The functional law of the iterated logarithm for stationary strongly mixing sequences. Ann. Probab. 23 (3), 1188–1203 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  39. E. Rio, Théorie asymptotique des processus aléatoires faiblement dépendants. Mathématiques & Applications, vol. 31 (Springer, Berlin, 2000)

    Google Scholar 

  40. G.O. Roberts, J.S. Rosenthal, General state space Markov chains and MCMC algorithms. Probab. Surv. 1, 20–71 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. S.M. Srivastava, A Course on Borel Sets. Graduate Texts in Mathematics, vol. 180 (Springer, New York, 1998)

    Google Scholar 

Download references

Acknowledgements

Research partially supported by MNiSW Grant N N201 608740 and the Foundation for Polish Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radosław Adamczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Adamczak, R., Bednorz, W. (2016). Orlicz Integrability of Additive Functionals of Harris Ergodic Markov Chains. In: Houdré, C., Mason, D., Reynaud-Bouret, P., Rosiński, J. (eds) High Dimensional Probability VII. Progress in Probability, vol 71. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-40519-3_13

Download citation

Publish with us

Policies and ethics