Skip to main content

Abrupt Climate Changes During the Marine Isotope Stage 3 (MIS 3)

  • Chapter
  • First Online:
Book cover Marine Isotope Stage 3 in Southern South America, 60 KA B.P.-30 KA B.P.

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

The climate in the North Atlantic Ocean during the Marine Isotope Stage 3 (MIS 3) —roughly between 80,000 years before present (B.P.) and 20,000 years B.P., within the last glacial period—is characterized by great instability, with opposing climate transitions including at least six colder Heinrich (H) events and fourteen warmer Dansgaard–Oeschger (D-O) events. Periodic longer cooling cycles encompassing two D-O events and ending in a colder Heinrich episode occurred lasting about 10 to 15 ky each, known as the Bond cycle. Heinrich events occurred less frequently than D-O events. These were recurrent every 1.5 ky on average, while ~10 ky elapsed between two H events. Neither of the two types of events is strictly periodical, however. After H events abrupt shifted to warmer climate, the D-O events followed immediately. During an H event, abnormally large amounts of rock debris transported by icebergs were deposited as layers at the bottom of the North Atlantic Ocean. The various theories on the causes include factors internal to the dynamics of ice sheets, and external factors such as changes in the solar flux and changes in the Atlantic Meridional Overturning Circulation (AMOC). The latter is the most robust hypothesis. At certain times, these ice sheets released large amounts of freshwater into the North Atlantic Ocean . Heinrich events are an extreme example of this, when the Laurentide ice sheet disgorged excessively large amounts of freshwater into the Labrador Sea in the form of icebergs. These freshwater dumps reduced ocean salinity enough to slow down deep-water formation and AMOC. Since AMOC plays an important role in transporting heat northward, a slowdown would cause the North Atlantic Ocean to cool. Later, as the addition of freshwater decreased, ocean salinity and deep-water formation increased and climate conditions recovered. During the D-O events, the high-latitude warming occurred abruptly (probably in decades to centuries), reaching temperatures close to interglacial conditions. Even though H and D-O events seemed to have been initiated in the North Atlantic Ocean , they had a global footprint. Global climate anomalies were consistent with a slowdown of AMOC and reduced ocean heat transport into the northern high latitudes. The bipolar pattern with warming conditions in the Northern Hemisphere (NH) and cooling in the Southern Hemisphere (SH) is discussed from the information published by various authors who have used the limited data available for the SH, and palaeoclimatic simulations obtained by numerical modelling. Results show that the SH mid-latitude anomalies presented much smaller magnitude than those of the NH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alkama R, Kageyama M, Ramstein G, Marti O, Ribstein P, Swingedouw D (2007) Impact of a realistic river routing in coupled ocean atmosphere simulations of the Last Glacial Maximum climate. Clim Dyn 30:855–869

    Article  Google Scholar 

  • Alley RB, Meese DA, Shuman CA, Gow AJ, Taylor KC, Grootes PM, Zielinski GA (1993) Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nat London 362:527–527

    Google Scholar 

  • Andres M, Gawarkiewicz GG, Toole JM (2013) Interannual sea level variability in the western North Atlantic: regional forcing and remote response. Geophys Res Lett 40:5915–5919. doi:10.1002/2013GL058013

    Article  Google Scholar 

  • Arbic BK, MacAyeal DR, Mitrovica JX, Milne GA (2004) Paleoclimate: Ocean tides and Heinrich events. Nature 432:460. doi:10.1038/432460a

    Google Scholar 

  • Baker PA, Rigsby CA, Seltzer GO, Fritz SC, Lowenstein TK, Bacher NP, Veliz C (2001) Tropical climate changes at millennial and orbital time scales on the Bolivian Altiplano. Nature 409:698–701

    Article  Google Scholar 

  • Barker S, Diz P, Vautravers MJ, Pike J, Knorr G, Hall IR, Broecker WS (2009) Interhemispheric Atlantic seesaw response during the last deglaciation. Nature 457(7233):1097–1102

    Article  Google Scholar 

  • Berger A (1978) Long term variations of daily insolation and quaternary climatic changes. J Atmos Sci 35(2):2362–2367

    Article  Google Scholar 

  • Birchfield GE, Broecker WS (1990) A salt oscillator in the glacial Atlantic? 2. A “scale analysis” model. Paleoceanography 5(6):835–843

    Article  Google Scholar 

  • Bitz CM, Chiang JCH, Cheng W, Barsugli JJ (2007) Rates of thermohaline recovery from freshwater pulses in modern, Last Glacial Maximum, and greenhouse warming climates. Geophys Res Lett 34(7). doi:10.1029/2006GL029237

  • Bond G, Lotti R (1995) Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation. Science 267:1005–1010

    Article  Google Scholar 

  • Bond G, Heinrich H, Broecker W, Labeyrie L, McManus J, Andrews J, Huon S, Jantschik R, Clasen S, Simet C, Tedesco K, Klas M, Bonani G, Ivy S (1992) Evidence for massive discharges of icebergs into the North Atlantic Ocean during the last glacial period. Nature 360:245–249

    Article  Google Scholar 

  • Bond G, Broecker W, Johnsen S, McManus J, Labeyrie L, Jouzel J, Bonani G (1993) Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365:143–147

    Article  Google Scholar 

  • Bond GC, Showers W, Cheseby M, Lotti R, Almasi P, deMenocal P, Priore P, Cullen H, Hajdas I, Bonani G (1997) A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278(5341):1257–1266

    Article  Google Scholar 

  • Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt J-Y, Abe- Ouchi A, Crucifix M, Driesschaert E, Fichefet T, Hewitt CD, Kageyama M, Kitoh A, Laîné A, Loutre M-F, Marti O, Merkel U, Ramstein G, Valdes P, Weber SL, Yu Y, Zhao Y (2007) Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum e part 1: experiments and large-scale features. Clim Past 3:261–277

    Article  Google Scholar 

  • Braun H, Kurths J (2010) Were Dansgaard-Oeschger events forced by the Sun? Eur Phys J-Spec Top 191(1):117–129

    Article  Google Scholar 

  • Braun H, Ganopolski A, Christl M, Chialvo DR (2007) A simple conceptual model of abrupt glacial climate events. Nonlin Processes Geophys 14:709–721

    Article  Google Scholar 

  • Broccoli AJ, Dahl KA, Stouffer RJ (2006) Response of the ITCZ to northern hemisphere cooling. Geophys Res Lett 33:L01702. doi:10.1029/2005GL024546

    Article  Google Scholar 

  • Broecker WS (1994) Massive iceberg discharges as triggers for global climate change. Nature 372:421–424

    Google Scholar 

  • Broecker WS (1998) Paleocean circulation during the last deglaciation: a bipolar seesaw? Paleoceanography 13:119–121

    Article  Google Scholar 

  • Brook EJ, Sowers T, Orchardo J (1996) Rapid variations in atmospheric methane concentration during the past 110,000 years. Science 273(5278):1087–1091

    Article  Google Scholar 

  • Buiron D, Chappellaz J, Stenni B, Frezzotti M, Baumgartner M, Capron E, Landais A, Lemieux-Dudon B, Masson-Delmotte V, Montagnat M, Parrenin F, Schilt A (2011) TALDICE-1 age scale of the Talos Dome deep ice core, East Antarctica. Clim Past 7:1–16. doi:10.5194/cp-7-1-2011

    Article  Google Scholar 

  • Buiron D, Stenni B, Chappellaz J, Landais A, Baumgartner M, Bonazza M, Capron E, Frezzotti M, Kageyama M, Lemieux-Dudon B, Masson-Delmotte V, Parrenin F, Schilt A, Selmo E, Severi M, Swingedouw D, Udisti R (2012) Regional imprints of millennial variability during the MIS 3 period around Antarctica. Quat Sci Rev 48:99–112

    Article  Google Scholar 

  • Calov R, Ganopolski A, Petoukhov V, Claussen M, Greve R (2002) Large-scale instabilities of the Laurentide ice sheet simulated in a fully coupled climate-system model. Geophys Res Lett 29(24)

    Google Scholar 

  • Chiang JCH, Cheng W, Bitz CM (2008) Fast teleconnections to the tropical Atlantic sector from Atlantic thermohaline adjustment. Geophys Res Lett 35:L07704. doi:10.1029/2008GL033292

    Article  Google Scholar 

  • Clark PU, Hostetler SW, Pisias NG, Schmittner A, Meissner KJ (2007) Mechanisms for an ∼7‐Kyr climate and sea‐level oscillation during marine isotope stage 3. Ocean circulation: mechanisms and impacts-past and future changes of meridional overturning, pp 209–246

    Google Scholar 

  • Clement AC, Peterson LC (2008) Mechanisms of abrupt climate change of the last glacial period. Rev Geophys 46. doi:10.1029/2006RG000204

  • Colling A (2001) Ocean circulation, vol 3. Open University, Oceanography Course Team Butterworth-Heinemann, Science, Butterworth-Heinemann, Oxford

    Google Scholar 

  • Conkright ME (2002) World ocean atlas. Objective analyses, data statistics, and figures. Silver Springs, MD: CD-ROM Documentation

    Google Scholar 

  • Cuffey KM, Clow GD (1997) Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition. J Geophys Res Oceans (1978–2012) 102(C12):26383–26396

    Google Scholar 

  • Dahl KA, Broccoli AJ, Stouffer RJ (2005) Assessing the role of North Atlantic freshwater forcing in millennial scale climate variability: a tropical Atlantic perspective. Clim Dyn 24:325–346

    Article  Google Scholar 

  • Dällenbach A, Blunier T, Flückiger J, Stauffer B, Chappellaz J, Raynaud D (2000) Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the last glacial and the transition to the Holocene. Geophys Res Lett 27:1005–1008

    Article  Google Scholar 

  • Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gundestrup NS, Hammer CU, Bond G (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364(6434):218–220

    Article  Google Scholar 

  • Ding Q, Steig EJ, Battisti DS, Küttel M (2011) Winter warming in West Antarctica caused by central tropical Pacific warming. Nat Geosci 4:398–403. doi:10.1038/ngeo1129

    Article  Google Scholar 

  • Ditlevsen PD, Andersen KK, Svensson A (2007) The DO-climate events are probably noise induced: statistical investigation of the claimed 1470 years cycle. Clim Past 3(1):129–134

    Article  Google Scholar 

  • Dokken TM, Nisancioglu KH, Li C, Battisti DS, Kissel C (2013) Dansgaard-Oeschger cycles: interactions between ocean and sea ice intrinsic to the Nordic seas. Paleoceanography 28(3):491–502

    Article  Google Scholar 

  • EPICA Community Members (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628

    Article  Google Scholar 

  • EPICA Community Members (2006) One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444:195–198. doi:10.1038/nature05301

    Article  Google Scholar 

  • Ezer T, Atkinson LP, Corlett WB, Blanco JL (2013) Gulf stream’s induced sea level rise and variability along the U.S. mid-Atlantic coast. J Geophys Res Oceans 118:685–697. doi:10.1002/jgrc.20091

    Article  Google Scholar 

  • Flückiger J, Dällenbach A, Blunier T, Stauffer B, Stocker TF, Raynaud D, Barnola J-M (1999) Variations in atmospheric N2O concentration during abrupt climatic changes. Science 285:227–230

    Article  Google Scholar 

  • Fuhrer K, Wolff EW, Johnsen SJ (1999) Timescales for dust variability in the Greenland Ice Core Project (GRIP) ice core in the last 100,000 years. J Geophys Res Atmos (1984–2012) 104(D24):31043–31052

    Google Scholar 

  • Genty D, Blamart D, Ouahdi R, Gilmour M, Baker A, Jouzel J, Van-Exter S (2003) Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data. Nature 421:833–937

    Article  Google Scholar 

  • Grootes PM, Stuiver M (1997) Oxygen 18/16 variability in Greenland snow and ice with 103‐to 105‐year time resolution. J Geophys Res Oceans (1978–2012) 102(C12):26455–26470

    Google Scholar 

  • Grootes PM, Stuiver M, White JWC, Johnsen SJ, Jouzel J (1993) Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366:552–554

    Article  Google Scholar 

  • Hall IR, Moran SB, Zahn R, Knutz PC, Shen CC, Edwards RL (2006) Accelerated drawdown of meridional overturning in the late-glacial Atlantic triggered 10 by transient pre-H event freshwater perturbation. Geophys Res Lett 33:L16616. doi:10.1029/2006GL026239

  • Heinrich H (1988) Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quat Res 29:142–152

    Article  Google Scholar 

  • Held IM, Ting M, Wang H (2002) Northern Winter stationary waves: theory and modeling. J Climate 15:2125–2144. doi:10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2

    Article  Google Scholar 

  • Hendy IL, Kennett JP, Roark EB, Ingram BL (2002) Apparent synchroneity of submillennial scale climate events between Greenland and Santa Barbara Basin, California from 30–10ka. Quaternary Sci Rev 21(10):1167–1184

    Google Scholar 

  • Hemming S (2004) Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev Geophys 42: RG1005. doi:10.1029/2003RG000128

  • Hu A, Otto-Bliesner BL, Meehl GA, Han W, Morrill C, Brady EC, Briegleb B (2008) Response of thermohaline circulation to freshwater forcing under present-day and LGM conditions. J Climate 21(10):2239–2258

    Google Scholar 

  • Hulbe CL, MacAyeal DR, Denton GH, Kleman J, Lowell TV (2004) Catastrophic ice shelf breakup as the source of Heinrich event icebergs. Paleoceanography 19(1). doi:10.1029/2003PA000890

    Google Scholar 

  • Huang RX, Cane MA, Naik N, Goodman P (2000) Global adjustment of the thermocline in response to deepwater formation. Geophys Res Lett 27:759–762

    Article  Google Scholar 

  • Huber C, Leuenberger M, Spahni R, Flückiger J, Schwander J, Stocker TF, Jouzel J (2006) Isotope calibrated Greenland temperature record over Marine Isotope Stage 3 and its relation to CH 4. Earth Planet Sci Lett 243(3):504–519

    Article  Google Scholar 

  • Jonkers L, Moros M, Prins M, Dokken T, Dahl C, Dijkstra N, Perner K, Brummer G (2010) A reconstruction of sea surface warming in the northern North Atlantic during MIS 3 ice-rafting events. Quaternary Sci Rev 29:1791–1800

    Google Scholar 

  • Jullien E, Grousset F, Malaize B, Duprat J, Sanchez-Goni MF, Eynaud F, Charlier K, Schneider R, Bory A, Bout V, Flores JA (2007) Low-latitude “dusty events” vs. high-latitude “icy Heinrich events”. Quat Res 68:379–386

    Article  Google Scholar 

  • Kageyama M, Paul A, Roche DM, van Meerbeeck CJ (2010) Modelling glacial climatic millennial-scale variability related to changes in the Atlantic meridional overturning circulation: a review. Quat Sci Rev 29:2931–2956

    Article  Google Scholar 

  • Kageyama M, Merkel U, Otto-Bliesner B, Prange M, Abe-Ouchi A, Lohmann G, Ohgaito R, Roche DM, Singarayer J, Swingedouw D, Zhang X (2013) Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: a multi-model study. Clim Past 9:935–953

    Article  Google Scholar 

  • Krebs U, Timmermann A (2007) Tropical air-sea interactions accelerate the recovery of the Atlantic meridional overturning circulation after a major shutdown. J Clim 20:4940–4956

    Article  Google Scholar 

  • Landais A, Caillon N, Goujon C, Grachev AM, Barnola JM, Chappellaz J, Jouzel J, Masson-Delmotte V, Leuenberger M (2004) Quantification of rapid temperature change during DO event 12 and phasing with methane inferred from air isotopic measurements. Earth Planet Sci Lett 225:221–232

    Article  Google Scholar 

  • Landais A, Masson-Delmotte V, Jouzel J, Raynaud D, Johnsen S, Huber C, Minster B (2006) The glacial inception as recorded in the North GRIP Greenland ice core: timing, structure and associated abrupt temperature changes. Clim Dyn 26(2–3):273–284

    Article  Google Scholar 

  • Landais A, Masson-Delmotte V, Stenni B, Selmo E, Roche DM, Jouzel J, Popp T (2015) A review of the bipolar see–saw from synchronized and high resolution ice core water stable isotope records from Greenland and East Antarctica. Quat Sci Rev 114:18–32

    Article  Google Scholar 

  • Lang C, Leuenberger M, Schwander J (1999) 16 °C rapid temperature variation in central Greenland 70,000 years ago. Science 286:934–937

    Article  Google Scholar 

  • Lebreiro SM, Moreno JC, McCave IN, Weaver PPE (1996) Evidence for Heinrich layers off Portugal (Tore Seamount: 39° N, 12° W). Mar Geol 131:47–56

    Article  Google Scholar 

  • Leuschner DC, Sirocko F (2000) The low-latitude monsoon climate during Dansgaard-Oeschger cycles and Heinrich Events. Quat Sci Rev 22:925–941

    Google Scholar 

  • MacAyeal DR (1993) Binge/purge oscillations of the Laurentide ice sheet as a cause of the North Atlantic’s Heinrich events. Paleoceanography 8(6):775–784

    Article  Google Scholar 

  • Manabe S, Stouffer RJ (1988) Two stable equilibria of a coupled ocean-atmosphere model. J Clim 1:841–866

    Article  Google Scholar 

  • Margalef O, Cacho I, Pla-Rabes S, Cañellas-Boltà N, Pueyo JJ, Sáez A, Pena LD, Valero-Garcés BL, Rull V, Giralt S (2015) Millennial-scale precipitation variability over Easter Island (South Pacific) during MIS 3: inter-hemispheric teleconnections with North Atlantic abrupt cold events. Clim Past Discuss 11:1407–1435. doi:10.5194/cpd-11-1407-2015

    Google Scholar 

  • McCarthy G, Frejka-Williams E, Johns WE, Baringer MO, Meinen CS, Bryden HL, Rayner D, Duchez A, Roberts C, Cunningham SA (2012) Observed interannual variability of the Atlantic Meridional overturning circulation at 26.5 N. Geophys Res Lett 39:L19609. doi:10.1029/2012GL052933

    Google Scholar 

  • McManus FJ, Francois R, Gherardi JM, Keigwin LD, Brown-Leger S (2004) Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428:834–837

    Article  Google Scholar 

  • Menviel L, Timmermann A, Mouchet A, Timm O (2008) Meridional reorganizations of marine and terrestrial productivity during Heinrich events. Paleoceanography 23:PA1203. doi:10.1029/2007PA001445

    Google Scholar 

  • Menviel L, England MH, Meissner KJ, Mouchet A, Yu J (2014a) Atlantic-Pacific seesaw and its role in outgassing CO2 during Heinrich events. Paleoceanography 29. doi:10.1002/2013PA002542

    Google Scholar 

  • Menviel L, Timmermann A, Friedrich T, England MH (2014b) Hindcasting the continuum of Dansgaard-Oeschger variability: mechanisms, patterns and timing. Clim Past 10(1):63–77

    Article  Google Scholar 

  • Merkel U, Prange M, Schulz M (2010) ENSO variability and teleconnections during glacial climates. Quat Sci Rev 29:86–100

    Article  Google Scholar 

  • Mo KC (2000) Relationships between interdecadal variability in the Southern Hemisphere and sea surface temperature anomalies. J Clim 13:3599–3610

    Article  Google Scholar 

  • Monnin E, Indermühle A, Dällenbach A, Flückiger J, Stauffer B, Stocker TF, Raynaud D, Barnola J-M (2001) Atmospheric CO2 concentrations over the last glacial termination. Science 291:112–114

    Article  Google Scholar 

  • Moseley GE, Spötl C, Svensson A, Cheng H, Brandstätter S, Edwards RL (2014) Multi-speleothem record reveals tightly coupled climate between central Europe and Greenland during Marine Isotope Stage 3. Geology 42(12):1043–1046

    Article  Google Scholar 

  • Mulitza S, Prange M, Stuut J, Zabel M, von Dobeneck T, Itambi AC, Nizou J, Schulz M, Wefer G (2008) Sahel megadroughts triggered by glacial slowdowns of Atlantic meridional overturning, Paleoceanography 23:PA420. doi:10.1029/2008PA001637

    Google Scholar 

  • Muller J, Wüst RAJ, Weiss DJ, Hu Y (2006) Geochemical and stratigraphic evidence of environmental change at Lynch’s Crater, Queensland, Australia. Glob Planet Change 53:269–277

    Article  Google Scholar 

  • Mulvaney R, Abram NJ, Hindmarsh RCA, Arrowsmith C, Fleet L, Triest J, Sime LC, Alemany O, Foord S (2012) Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history. Nature 489(7414):141–144

    Article  Google Scholar 

  • Niedermeyer EM, Prange M, Mulitza S, Mollenhauer G, Schefuss E, Schulz M (2009) Extratropical forcing of Sahel aridity during Heinrich stadials. Geophys Res Lett 36:L20707. doi:10.1029/2009GL039687

    Article  Google Scholar 

  • North Greenland Ice Core Project Members. Andersen KK, Azuma N, Barnola JM, Bigler M, Biscaye P, Caillon N, White JWC (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431:147–151

    Google Scholar 

  • Obrochta SP, Miyahara H, Yokoyama Y, Crowley TJ (2012) A re-examination of evidence for the North Atlantic “1500-year cycle” at Site 609. Quat Sci Rev 55:23–33

    Article  Google Scholar 

  • Otto-Bliesner BL, Brady EC (2010) The sensitivity of the climate response to the magnitude and location of freshwater forcing: Last Glacial Maximum experiments. Quat Sci Rev 29:56–73

    Article  Google Scholar 

  • Oster JL, Montañez IP, Mertz-Kraus R, Sharp WD, Stock GM, Spero HJ, John Tinsley, James C Zachos (2014) Millennial-scale variationsin western Sierra Nevada precipitation during the last glacial cycle MIS 4/3 transition. Quaternary Res 82(1):236–248

    Google Scholar 

  • Parker A, Ollier CD (2016) There is no real evidence for a diminishing trend of the Atlantic meridional overturning circulation. J Ocean Eng Sci 1(1):30–35

    Google Scholar 

  • Parkinson CL, Cavalieri DJ (2012) Antarctic sea ice variability and trends, 1979–2010. Cryosphere 6(4):871–880

    Article  Google Scholar 

  • Pausata FSR, Battisti DS, Nisancioglu KH, Bitz CM (2011) Chinese stalagmite 18O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nat Geosci 4:474–480

    Article  Google Scholar 

  • Peltier WR (2004) Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149

    Article  Google Scholar 

  • Peterson LC, Haug GH (2006) Variability in the mean latitude of the Atlantic Intertropical Convergence Zone as recorded by riverine input of sediments to the Cariaco Basin (Venezuela). Palaeogeogr Palaeoclimatol Palaeoecol 234(1):97–113

    Google Scholar 

  • Peterson LC, Haug GH, Hughen KA, Röhl U (2000) Rapid changes in the hydrologic cycle of the tropical North Atlantic during the last glacial. Science 290:1947–1951

    Article  Google Scholar 

  • Petersen SV, Schrag DP, Clark PU (2013) A new mechanism for Dansgaard-Oeschger cycles. Paleoceanography 28(1):24–30

    Article  Google Scholar 

  • Rahmstorf S (1996) On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim Dyn 12(12):799–811

    Article  Google Scholar 

  • Rahmstorf S (2003) Timing of abrupt climate change: a precise clock. Geophys Res Lett 30(10):1510

    Google Scholar 

  • Rahmstorf S (2006) Thermohaline ocean circulation. In: Elias SA (ed) Encyclopedia of quaternary sciences. Elsevier, Amsterdam

    Google Scholar 

  • Roche D, Paillard D, Cortijo E (2004) Constraints on the duration and freshwater release of Heinrich event 4 through isotope modelling. Nature 432:379–382

    Google Scholar 

  • Romanova V, Lohmann G, Grosfeld K, Butzin M (2006) The relative role of oceanic heat transport and orography on glacial climate. Quat Sci Rev 25(7):832–845

    Article  Google Scholar 

  • Rossby T, Flagg CN, Donohue K, Sanchez‐Franks A, Lillibridge J (2014) On the long‐term stability of Gulf stream transport based on 20 years of direct measurements. Geophys Res Lett 41(1):114–120

    Google Scholar 

  • Saha R (2015) Millennial-scale stable oscillations between sea ice and convective deep water formation. Preprint arXiv:1503.03494

  • Schulz M (2002) On the 1470-year pacing of Dansgaard-Oeschger warm events. Paleoceanography 17(2):1–4

    Article  Google Scholar 

  • Schulz H, von Rad U, Erlenkeuser H (1998) Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature 393:54–57

    Google Scholar 

  • Schwander J, Sowers T, Barnola J-M, Blunier T, Fuchs A, Malaize B (1997) Age scale of the air in the summit ice: implication for glacial-interglacial temperature change. J Geophys Res 102:19483–19494

    Article  Google Scholar 

  • Seager R, Battisti DS (2007) Challenges to our understanding of the general circulation: abrupt climate change. Glob Circ Atmos 331–371

    Google Scholar 

  • Severinghaus JP, Brook EJ (1999) Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science 286(5441):930–934

    Google Scholar 

  • Steffensen JP, Andersen KK, Bigler M, Clausen HB, Dahl-Jensen D, Fischer H, Goto-Azuma K, Hansson M, Johnsen SJ, Jouzel J, Masson-Delmotte V, Popp T, Rasmussen SO, Röthlisberger R, Ruth U, Stauffer B, Siggaard-Andersen M, Sveinbjörnsdóttir AE, Svensson A, White JCW (2008) High-resolution Greenland ice core data show abrupt climate change happens in few years. Science 321(5889), 680–684

    Google Scholar 

  • Stocker TF, Johnsen SJ (2003) A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18(4):1087. doi:10.1029/2003PA000920

    Google Scholar 

  • Stouffer RJ, Yin J, Gregory JM, Dixon KW, Spelman MJ, Hurlin W, Weaver AJ, Eby M, Flato GM, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Peltier WR, Robitaille DY, Sokolov A, Vettoretti G, Weber SL (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19:1365–1387. doi:10.1175/JCLI3689.1

    Article  Google Scholar 

  • Swingedouw D, Mignot J, Braconnot P, Mosquet E, Kageyama M, Alkama R (2009) Impact of freshwater release in the North Atlantic under different climate conditions in an OAGCM. J Clim 22:6377–6403

    Article  Google Scholar 

  • Talley LD (2002) Salinity patterns in the ocean. Encyclopedia of global change. In: MacCracken MC, Perry JS (eds) Volume: the earth system: physical and chemical dimensions of global environmental change, pp 629–640

    Google Scholar 

  • Taylor KC, Lamorey GW, Doyle GA, Alley RB, Grootes PM, Mayewski PA, White JWC, Barlow LK (1993), The flickering switch of late Pleistocene climate change. Nature 361:432–436

    Google Scholar 

  • Timmermann A, Menviel L, Okumura Y, Schilla A, Merkel U, Timm O, Hu A, Otto-Bliesner B, Schulz M (2010) Towards a quantitative understanding of millennial-scale Antarctic Warming events. Quat Sci Rev 29:74–85

    Google Scholar 

  • Thomas ER, Wolff EW, Mulvaney R, Johnsen SJ, Steffensen JP, Arrowsmith C (2009) Anatomy of a Dansgaard-Oeschger warming transition: High-resolution analysis of the North Greenland Ice Core Project ice core. J Geophys Res-Atmos, 114(D8)

    Google Scholar 

  • Vellinga M, Wood RA (2008) Impacts of thermohaline circulation shutdown in the twenty-first century. Clim Change 91(1–2):43–63

    Article  Google Scholar 

  • Voelker AHL (2002) Global distribution of centennial-scale records for marine isotope stage (MIS) 3: a database. Quat Sci Rev 21:1185–1212. doi:10.1016/S0277-3791(01)00139-1

    Article  Google Scholar 

  • Wang Z, Mysak LA (2006) Glacial abrupt climate changes and Dansgaard-Oeschger oscillations in a coupled climate model. Paleoceanography 21(2)

    Google Scholar 

  • Wagner G, Beer J, Masarik J, Muscheler R, Kubik PW, Mende W, Yiou F (2001) Presence of the solar de Vries cycle (∼205 years) during the last ice age. Geophys Res Lett 28(2):303–306

    Article  Google Scholar 

  • Wang YJ, Cheng H, Edwards RL, An ZS, Wu JY, Shen C-C, Dorale JA (2001) A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 294:2345–2348

    Article  Google Scholar 

  • Wang X, Auler AS, Edwards RL, Cheng H, Cristalli PS, Smart PL, Richards DA, Shen C-C (2004) Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 432:740–743. doi:10.1038/nature03067

    Article  Google Scholar 

  • Wang X, Auler AS, Edwards RL, Cheng H, Ito E, Wang Y, Kong X, Solheid M (2007) Millennial-scale precipitation changes in southern Brazil over the past 90,000 years. Geophys Res Lett 34:1–5

    Google Scholar 

  • Williams PW, McGlone M, Neil H, Zhao JX (2015) A review of New Zealand palaeoclimate from the Last Interglacial to the global Last Glacial Maximum. Quaternary Sci Rev 110:92–106

    Google Scholar 

  • Wolff EW, Barbante C, Becagli S, Bigler M, Boutron CF, Castellano E, de Angelis M, Federer U, Fischer H, Fundel F, Hansson M, Hutterli M, Jonsell U, Karlin T, Kaufmann P, Lambert F, Littot GC, Mulvaney R, Röthlisberger R, Ruth U, Severi M, Siggaard-Andersen ML, Sime LC, Steffensen JP, Stocker TF, Traversi R, Twarloh B, Udisti R,Wagenbach D, Wegner A (2010) Changes in environment over the last 800,000 years from chemical analysis of the EPICA Dome C ice core. Quat Sci Rev 29:285–295

    Google Scholar 

  • Wunsch C (2006) Abrupt climate change: an alternative view. Quat Res 65:191–203

    Article  Google Scholar 

  • Yin J, Goddard PB (2013) Oceanic control of sea level rise patterns along the East Coast of the United States. Geophys Res Lett 40(20):5514–5520. doi:10.1002/2013GL057992

    Article  Google Scholar 

  • Zhang X, Prange M, Merkel U, Schulz M (2015) Spatial fingerprint and magnitude of changes in the Atlantic meridional overturning circulation during marine isotope stage 3. Geophys Res Lett 42(6):1903–1911

    Article  Google Scholar 

Download references

Acknowledgments

We thank the National Agency of Science and Technique Promotion of Argentina (ANPCyT) for supporting the project PICT-2013-0043. Many thanks to the Carmelite Order.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Andrés Agosta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Agosta, E.A., Compagnucci, R.H. (2016). Abrupt Climate Changes During the Marine Isotope Stage 3 (MIS 3). In: Gasparini, G., Rabassa, J., Deschamps, C., Tonni, E. (eds) Marine Isotope Stage 3 in Southern South America, 60 KA B.P.-30 KA B.P.. Springer Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-40000-6_5

Download citation

Publish with us

Policies and ethics