Skip to main content

Electrospinning—Commercial Applications, Challenges and Opportunities

  • Chapter
  • First Online:
Book cover Nano-size Polymers

Abstract

The high surface area to volume ratio makes nanofibres the ideal candidate for various applications where high porosity and high surface area is desirable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCann JT, Marquez M, Xia Y (2006) Melt Coaxial electrospinning: a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers. Nano Lett 6(12):2868–2872. doi:10.1021/nl0620839

    Article  Google Scholar 

  2. Huang T, Marshall LR, Armantrout JE, Yembrick S, Dunn WH, Oconnor JM, Mueller T, Avgousti M, Wetzel MD (2012) Production of nanofibers by melt spinning. In: Google Patents

    Google Scholar 

  3. Che G, Lakshmi BB, Martin CR, Fisher ER, Ruoff RS (1998) Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method. Chem Mater 10(1):260–267. doi:10.1021/cm970412f

    Article  Google Scholar 

  4. Yoon YJ, Baik HK (2001) Catalytic growth mechanism of carbon nanofibers through chemical vapor deposition. Diam Relat Mater 10(3–7):1214–1217. doi:10.1016/S0925-9635(00)00585-9

    Article  Google Scholar 

  5. Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294(5547):1684–1688. doi:10.1126/science.1063187

    Article  Google Scholar 

  6. Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotech 21(10):1171–1178

    Article  Google Scholar 

  7. Lin Y, Yao Y, Yang X, Wei N, Li X, Gong P, Li R, Wu D (2008) Preparation of poly(ether sulfone) nanofibers by gas-jet/electrospinning. J Appl Polym Sci 107(2):909–917. doi:10.1002/app.26445

    Article  Google Scholar 

  8. Wang B, Yao Y, Peng J, Lin Y, Liu W, Luo Y, Xiang R, Li R, Wu D (2009) Preparation of poly(ester imide) ultrafine fibers by gas-jet/electrospinning. J Appl Polym Sci 114(2):883–891. doi:10.1002/app.30505

    Article  Google Scholar 

  9. Hung AM, Stupp SI (2007) Simultaneous self-assembly, orientation, and patterning of Peptide–Amphiphile nanofibers by soft lithography. Nano Lett 7(5):1165–1171. doi:10.1021/nl062835z

    Article  Google Scholar 

  10. Cui H, Kalinin SV, Yang X, Lowndes DH (2004) Growth of carbon nanofibers on tipless cantilevers for high resolution topography and magnetic force imaging. Nano Lett 4(11):2157–2161. doi:10.1021/nl048740j

    Article  Google Scholar 

  11. Gilbert W, De Magnete (1991) Translated 1893 from Latin to English by Paul Fleury Mottelay. New York

    Google Scholar 

  12. Taylor G (1964) Disintegration of Water Droplets in an Electric Field. Proceed Roy Soc A 280(1382):383

    Article  Google Scholar 

  13. Cooley JF (1902) Apparatus for electrically dispersing fluids. In: Google Patents

    Google Scholar 

  14. Morton WJ (1902) Method of dispersing fluids. In: Google Patents

    Google Scholar 

  15. Anton F (1934) Process and apparatus for preparing artificial threads. In: Google Patents

    Google Scholar 

  16. Barhate RS, Ramakrishna S (2007) Nanofibrous filtering media: Filtration problems and solutions from tiny materials. J Membr Sci 296(1–2):1–8. doi:10.1016/j.memsci.2007.03.038

    Article  Google Scholar 

  17. Persano L, Camposeo A, Tekmen C, Pisignano D (2013) Industrial upscaling of electrospinning and applications of polymer nanofibers: a review. Macromol Mater Eng 298(5):504–520. doi:10.1002/mame.201200290

    Article  Google Scholar 

  18. Andrady AL (2008) Science and Technology of polymer nanofibers. Wiley, Hoboken

    Book  Google Scholar 

  19. Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7(3):216

    Article  Google Scholar 

  20. Srinivasan G, Reneker DH (1995) Structure and morphology of small diameter electrospun aramid fibers. Polym Int 36(2):195–201. doi:10.1002/pi.1995.210360210

    Article  Google Scholar 

  21. Wang X, Drew C, Lee S-H, Senecal KJ, Kumar J, Samuelson LA (2002) Electrospun nanofibrous membranes for highly sensitive optical sensors. Nano Lett 2(11):1273–1275. doi:10.1021/nl020216u

    Article  Google Scholar 

  22. Wang T, Kumar S (2006) Electrospinning of polyacrylonitrile nanofibers. J Appl Polym Sci 102(2):1023–1029. doi:10.1002/app.24123

    Article  Google Scholar 

  23. Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170. doi:10.1002/adma.200400719

    Article  Google Scholar 

  24. Wang X, Niu H, Lin T, Wang X (2009) Needleless electrospinning of nanofibers with a conical wire coil. Polym Eng Sci 49(8):1582–1586. doi:10.1002/pen.21377

    Article  Google Scholar 

  25. Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49(10):2387–2425. doi:10.1016/j.polymer.2008.02.002

    Article  Google Scholar 

  26. Frenot A, Chronakis IS (2003) Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci 8(1):64–75. doi:10.1016/S1359-0294(03)00004-9

    Article  Google Scholar 

  27. Barua B, Saha MC (2015) Investigation on jet stability, fiber diameter, and tensile properties of electrospun polyacrylonitrile nanofibrous yarns. Journal of Applied Polymer Science, n/a-n/a (2015). doi:10.1002/app.41918

    Google Scholar 

  28. Cai Y, Gevelber M (2013) The effect of relative humidity and evaporation rate on electrospinning: fiber diameter and measurement for control implications. J Mater Sci 48(22):7812–7826. doi:10.1007/s10853-013-7544-x

    Article  Google Scholar 

  29. Yarin AL, Koombhongse S, Reneker DH (2001) Bending instability in electrospinning of nanofibers. J Appl Phys 89(5):3018–3026. doi:10.1063/1.1333035

    Article  Google Scholar 

  30. Reneker DH, Yarin AL, Fong H, Koombhongse S (2000) Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J Appl Phys 87(9):4531–4547. doi:10.1063/1.373532

    Article  Google Scholar 

  31. Shin YM, Hohman MM, Brenner MP, Rutledge GC (2001) Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer 42(25):09955–09967. doi:10.1016/S0032-3861(01)00540-7

    Article  Google Scholar 

  32. Shin YM, Hohman MM, Brenner MP, Rutledge GC (2001) Electrospinning: a whipping fluid jet generates submicron polymer fibers. Appl Phys Lett 78(8):1149–1151. doi:10.1063/1.1345798

    Article  Google Scholar 

  33. Hohman MM, Shin M, Rutledge G, Brenner MP (2001) Electrospinning and electrically forced jets. II. Appl Phys Fluids (1994-present) 13(8):2221–2236 (2001). doi:http://dx.doi.org/10.1063/1.1384013

    Google Scholar 

  34. Yarin AL, Koombhongse S, Reneker DH (2001) Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J Appl Phys 90(9):4836–4846. doi:10.1063/1.1408260

    Article  Google Scholar 

  35. Reneker DH, Yarin AL, Zussman E, Xu H (2007) Electrospinning of nanofibers from polymer solutions and melts. In: Hassan A, van Erik der G (eds) Adv Appl Mech 41:43–346 (Elsevier)

    Google Scholar 

  36. Sahay R, Thavasi V, Ramakrishna S (2011) Design modifications in electrospinning setup for advanced applications. J Nanomaterials 2011:17. doi:10.1155/2011/317673

    Article  Google Scholar 

  37. BioInicia, http://www.bioinicia.com/. Accessed 2015

  38. Elmarco N http://www.elmarco.com/. Accessed 2015

  39. Hayes T, Hosie I (2015) Turning nanofibres into products: electrospinning from a manufacturer’s perspective. In: Macagnano A, Zampetti E, Kny E (eds) Electrospinning for high performance sensors. NanoSci Technol 305–329. Springer International Publishing

    Google Scholar 

  40. Revolution Fibres Ltd http://www.revolutionfibres.com/ (2013–2015)

  41. Pringle C Single bubble-electrospinning of polyvinyl alcohol and polyacrylonitrile. Stellenbosch University (2011–2012)

    Google Scholar 

  42. Wahyudiono, Murakami K, Machmudah S, Sasaki M, Goto M (2012) A dry process for polymer nano-microfibers prepared by electrospinning under pressurized CO2. Jpn J Appl Phys 51(8S1):08HF07

    Google Scholar 

  43. Gou Z, McHugh AJ (2004) Two-dimensional modeling of dry spinning of polymer fibers. J Nonnewton Fluid Mech 118(2–3):121–136. doi:10.1016/j.jnnfm.2004.03.003

    Article  Google Scholar 

  44. Kostakova MSE, Pokorny P, Lukas D, Kostakova E, Seps M, Pokorny P, Lukas D (2014) Express Polym Lett 8:554–564. doi:10.3144/expresspolymlett.2014.59

    Article  Google Scholar 

  45. Xanofi, Xanoshear, XanoMatrix (http://www.xanofi.com/tech.html). Accessed 2014

  46. i. Hills www.hillsinc.net/. Accessed 2015

  47. Yuan X, Mak AFT, Kwok KW, Yung BKO, Yao K (2001) Characterization of poly(L-lactic acid) fibers produced by melt spinning. J Appl Polym Sci 81(1):251–260. doi:10.1002/app.1436

    Article  Google Scholar 

  48. Dalton PD, Grafahrend D, Klinkhammer K, Klee D, Möller M (2007) Electrospinning of polymer melts: phenomenological observations. Polymer 48(23):6823–6833. doi:10.1016/j.polymer.2007.09.037

    Article  Google Scholar 

  49. Larrondo L, R. St. John Manley (1981) Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. J Polym Sci: Polym Phys Ed 19(6):909–920. doi:10.1002/pol.1981.180190601

    Google Scholar 

  50. Larrondo L, R. St. John Manley (1981) Electrostatic fiber spinning from polymer melts. II. Examination of the flow field in an electrically driven jet. J Polym Sci: Polym Phys Ed 19(6):921–932. doi:10.1002/pol.1981.180190602

    Google Scholar 

  51. Larrondo L, R. St. John Manley (1981) Electrostatic fiber spinning from polymer melts. III. Electrostatic deformation of a pendant drop of polymer melt. J Polym Sci: Polym Phys Ed 19(6):933–940. doi:10.1002/pol.1981.180190603

    Google Scholar 

  52. Li F, Zhao Y, Wang S, Han D, Jiang L, Song Y (2009) Thermochromic core–shell nanofibers fabricated by melt coaxial electrospinning. J Appl Polym Sci 112(1):269–274. doi:10.1002/app.29384

    Article  Google Scholar 

  53. Liu Y, Li X, Ramakrishna S (2014) Melt electrospinning in a parallel electric field. J Polym Sci, Part B: Polym Phys 52(14):946–952. doi:10.1002/polb.23511

    Article  Google Scholar 

  54. Deng R, Liu Y, Ding Y, Xie P, Luo L, Yang W (2009) Melt electrospinning of low-density polyethylene having a low-melt flow index. J Appl Polym Sci 114(1):166–175. doi:10.1002/app.29864

    Article  Google Scholar 

  55. Yang RJDWM, Liu Y, Ding YM A high-efficiency spinning head for electrospinning. China Patent ZL20082008287.3

    Google Scholar 

  56. Electrospunra. (http://www.electrospunra.com/index.html#page_1) Accessed 2014

  57. FibeRio. http://fiberiotech.com/technology/how-it-works/. Accessed 2015

  58. Sarkar K, Gomez C, Zambrano S, Ramirez M, de Hoyos E, Vasquez H, Lozano K (2010) Electrospinning to Forcespinning™. Mater Today 13(11):12–14. doi:10.1016/S1369-7021(10)70199-1

    Article  Google Scholar 

  59. Badrossamay MR, McIlwee HA, Goss JA, Parker KK (2010) Nanofiber assembly by rotary jet-spinning. Nano Lett 10(6):2257–2261. doi:10.1021/nl101355x

    Article  Google Scholar 

  60. Agarwal S, Greiner A (2011) On the way to clean and safe electrospinning—Green electrospinning: emulsion and suspension electrospinning. Polym Adv Technol 22(3):372–378. doi:10.1002/pat.1883

    Article  Google Scholar 

  61. Yarin AL (2011) Coaxial electrospinning and emulsion electrospinning of core–shell fibers. Polym Adv Technol 22(3):310–317. doi:10.1002/pat.1781

    Article  Google Scholar 

  62. Angeles M, Cheng H-L, Velankar SS (2008) Emulsion electrospinning: composite fibers from drop breakup during electrospinning. Polym Adv Technol 19(7):728–733. doi:10.1002/pat.1031

    Article  Google Scholar 

  63. Hener W (1942) Interpolymers of vinyl sulphonic acid with another vinyl compound and aqueous emulsions thereof. In: Google Patents

    Google Scholar 

  64. Seizo O, Tadashi M, Hiroshi A, Ippei C (1963) Process for the production of fibers having polyvinyl chloride as the principal constituent and also containing polyvinyl alcohol. In: Google Patents

    Google Scholar 

  65. Arthur BL, Edwin JW (1956) Composition comprising a polyhalogenated ethylene polymer and viscose and process of shaping the same. In: Google Patents

    Google Scholar 

  66. Le Fevre Walter J, P SD (1963) Emulsion polymerization with amino alcohol esters as cationic comonomers. In: Google Patents

    Google Scholar 

  67. Matsuo K, Araki M, Matsugu T, Mikami T (1975) Emulsions useful in the preparation of heat resistant fibers and films. In: Google Patents

    Google Scholar 

  68. Tsuji T, Korematsu M (1975) Highly flame-retardant shaped articles and method for preparing the same. In: Google Patents

    Google Scholar 

  69. Camerlo A, Vebert-Nardin C, Rossi RM, Popa AM (2013) Fragrance encapsulation in polymeric matrices by emulsion electrospinning. Eur Polym J 49(12):3806–3813. doi:10.1016/j.eurpolymj.2013.08.028

    Article  Google Scholar 

  70. Sinha-Ray S, Zhang Y, Placke D, Megaridis CM, Yarin AL (2010) Resins with “Nano-Raisins”. Langmuir 26(12):10243–10249. doi:10.1021/la1004177

    Article  Google Scholar 

  71. Qi P, Hu J, Wang Xu (2006) Encapsulation of drug reservoirs in fibers by emulsion electrospinning: morphology characterization and preliminary release assessment. Biomacromolecules 7(8):2327–2330. doi:10.1021/bm060264z

    Article  Google Scholar 

  72. Gentsch R, Pippig F, Schmidt S, Cernoch P, Polleux J, Börner HG (2011) Single-step electrospinning to bioactive polymer nanofibers. Macromolecules 44(3):453–461. doi:10.1021/ma102847a

    Article  Google Scholar 

  73. Choi S-H, Youn D-Y, Jo SM, Oh S-G, Kim I-D (2011) Micelle-Mediated synthesis of single-crystalline β(3C)-SiC fibers via emulsion electrospinning. ACS Appl Mater Interfaces 3(5):1385–1389. doi:10.1021/am200171v

    Article  Google Scholar 

  74. Bazilevsky AV, Yarin AL, Megaridis CM (2007) Co-electrospinning of Core–Shell fibers using a single-nozzle technique. Langmuir 23(5):2311–2314. doi:10.1021/la063194q

    Article  Google Scholar 

  75. AMSOIL Inc, AMSOIL Ea Air Filters https://www.amsoil.com/shop/by-product/filters-and-by-pass-systems/air/amsoil-ea-air-filters/. Accessed 29 Apr 2015

  76. United Air Specialists Inc., Clarcor, PROTURA® Advanced nanofiber. http://www.uasinc.com/Products/Replacement-Filters/ProTura-Nanofiber-Technology. Accessed 29 Apr 2015

  77. Donaldson Company Inc., Ultra-Web Media Technology. http://www2.donaldson.com/torit/en-us/pages/products/ultra-webmediatechnology.aspx. Accessed 29 Apr 2015

  78. DHA Filter LLC, Duraweb™ Nanofiber Dust Cartridges. http://www.dhafilter.com/#!duraweb-nanofiber-dust-cartridges/c1poj. Accessed 29 Apr 2015

  79. eSpin Technologies http://www.espintechnologies.com/. Accessed 29 March 2015

  80. Finetex EnE Inc. http://ftene.com/. Accessed 1 Apr 2015

  81. Vose H NanoWeb Nanofiber Technology. http://www.hollingsworth-vose.com/en/KnowledgeCenter/White-Papers/nanofiber/. Accessed 29 Apr 2015

  82. Hummel M Small fibers–big effect. https://www.mann-hummel.com/en/corp/news/news/newsdetail/?tx_ttnews%5Btt_news%5D=191&cHash=bc13c54ba5b73e17fcd8f05cf8600a44. Accessed 29 Apr 2015

  83. Air V, Revo II. http://www.vokesair.com/products/bag-filters-0/revo-ii. Accessed 29 Apr 2015

  84. Donaldson Company Inc., Donaldson Membranes: Improving filter performance with Tetratex PTFE membrane filter media. http://www2.donaldson.com/tetratex/en-us/pages/home.aspx. Accessed 29 Apr 2015

  85. Pont D, Hybrid Membrane Technology (HMT). http://www2.dupont.com/Separation_Solutions/en_US/tech_info/hmt/hmt.html. Accessed 29 Apr 2015

  86. Pardam nanotechnology. http://pardam.cz/. Accessed 1 Apr 2015

  87. SPUR a.s. http://www.spur-nanotechnologies.cz/. Accessed 5 Apr 2015

  88. Denon. http://headphone.usa.denon.com/#slideCont1. Accessed 2015

  89. LG http://www.lg.com/uk/press-release/smart-hi-fi-audio-wireless-multi-room-solution-from-lg. Accessed 2015

  90. Arsenal Medical. http://www.arsenalmedical.com/. Accessed 10 Apr 2015

  91. Electrospinning Company. http://www.electrospinning.co.uk/. Accessed 3 Apr 2015

  92. Nanofiber Solutions. http://www.nanofibersolutions.com/. Accessed 3 Apr 2015

  93. Xanofi. http://xanofi.com/. Accessed 2 April 2015

  94. Veterinary N http://nanofiberveterinary.com/. Accessed 2015

  95. Beckermann GW, Pickering KL (2015) Mode I and Mode II interlaminar fracture toughness of composite laminates interleaved with electrospun nanofibre veils. Compos A Appl Sci Manuf 72:11–21. doi:10.1016/j.compositesa.2015.01.028

    Article  Google Scholar 

  96. Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21(16):1595–1598. doi:10.1002/adma.200803174

    Article  Google Scholar 

  97. Chang J, Dommer M, Chang C, Lin L (2012) Piezoelectric nanofibers for energy scavenging applications. Nano Energy 1(3):356–371. doi:10.1016/j.nanoen.2012.02.003

    Article  Google Scholar 

  98. Ji L, Zhang X (2009) Electrospun carbon nanofibers containing silicon particles as an energy-storage medium. Carbon 47(14):3219–3226. doi:10.1016/j.carbon.2009.07.039

    Article  Google Scholar 

  99. Meng C, Xiao Y, Wang P, Zhang L, Liu Y, Tong L (2011) Quantum-dot-doped polymer nanofibers for optical sensing. Adv Mater 23(33):3770–3774. doi:10.1002/adma.201101392

    Google Scholar 

  100. Sawicka K, Gouma P, Simon S (2005) Electrospun biocomposite nanofibers for urea biosensing. Sens Actuators B: Chem 108(1–2):585–588. doi:10.1016/j.snb.2004.12.013

    Article  Google Scholar 

  101. Virji S, Huang J, Kaner RB, Weiller BH (2004) Polyaniline Nanofiber gas sensors: examination of response mechanisms. Nano Lett 4(3):491–496. doi:10.1021/nl035122e

    Article  Google Scholar 

  102. Su X, Ren J, Meng X, Ren X, Tang F (2013) A novel platform for enhanced biosensing based on the synergy effects of electrospun polymer nanofibers and graphene oxides. Analyst 138(5):1459–1466. doi:10.1039/C2AN36663K

    Article  Google Scholar 

  103. Vaporsens. http://www.vaporsens.com/sensors/. Accessed 2015

  104. Kannan B, Williams DE, Laslau C, Travas-Sejdic J (2012) A highly sensitive, label-free gene sensor based on a single conducting polymer nanowire. Biosens Bioelectron 35(1):258–264. doi:10.1016/j.bios.2012.02.058

    Article  Google Scholar 

  105. Kannan B, Williams DE, Khoshmanesh K, Bowmaker GA, Travas-Sejdic J (2012) The electrochemical growth of conducting polymer “nanowires”. J Electroanal Chem 669:82–89. doi:10.1016/j.jelechem.2012.01.022

    Article  Google Scholar 

  106. Ra EJ, Raymundo-Piñero E, Lee YH, Béguin F (2009) High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper. Carbon 47(13):2984–2992. doi:10.1016/j.carbon.2009.06.051

    Article  Google Scholar 

  107. Wu Q, Xu Y, Yao Z, Liu A, Shi G (2010) Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4(4):1963–1970. doi:10.1021/nn1000035

    Article  Google Scholar 

  108. Teijin. http://www.teijin.com/news/2012/ebd120426_00.html. Accessed 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhuvana Kannan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kannan, B., Cha, H., Hosie, I.C. (2016). Electrospinning—Commercial Applications, Challenges and Opportunities. In: Fakirov, S. (eds) Nano-size Polymers. Springer, Cham. https://doi.org/10.1007/978-3-319-39715-3_11

Download citation

Publish with us

Policies and ethics