Skip to main content

Nanosensors for the Detection of Pathogenic Bacteria

  • Chapter
  • First Online:

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 20))

Abstract

The consumption of microbiologically unsafe water poses major health threats and leads to several diseases like diarrhea, typhoid and cholera. Hence, the management of water quality is a growing need for public health and environment in the developing world. Existing methods for pathogen detection face challenges of inadequate monitoring in terms of specificity, rapidity and simplicity. Molecular methods including polymerase chain reaction (PCR) and its advanced version real-time PCR can detect pathogens at low levels. However, the requirement of sophisticated instrumentation and trained personnel makes these methods less applicable to field situations. The detection of target pathogens needs improvements to overcome existing drawbacks and should be based on simple, rapid, sensitive and specific methodologies.

Here, nanotechnology provides solutions such as biodiagnostics, where nanoparticle-based assays allow to specifically detect bioanalytes of clinical interest. Gold nanoparticles are promising materials because they have unique optical properties and high surface areas. Nanobiosensors are specific molecular-recognition probes that target an analyte, then convert that recognition into a measurable signal. Aptamers are single-stranded oligonucleotides that can fold into three-dimensional conformations. Aptamers have the unique property of binding specifically to a target molecule. As molecular recognition probes, aptamers in conjugation with gold nanoparticles have binding affinities and specificities that are can be explored to capture and identify specific pathogens. This chapter reviews practical applications of aptamer-conjugated nanoparticles for the detection of pathogenic bacteria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmed W, Neller R, Katouli M (2005) Host species-specific metabolic fingerprint database for Enterococci and Escherichia coli and its application to identify sources of fecal contamination in surface waters. Appl Environ Microbiol 71:4461–4468. doi:10.1128/AEM.71.8.4461-4468.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrews WH, Hammack TS (2007) Bacteriological Analytical Manual (BAM). Chapter 5 Salmonella.URI:http://www.fda.gov/Food/ScienceResearch/LaboratoryMethods/BacteriologicalAnalyticalManualBAM/ucm070149.htm

  • Baptista P, Pereira E, Eaton P, Doria G, Miranda A, Gomes I, Quaresma P, Franco R (2008) Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem 391:943–950

    Article  CAS  PubMed  Google Scholar 

  • Baudart J, Lemarchand K, Brisabois A, Lebaron P (2000) Diversity of Salmonella strains isolated from the aquatic environment as determined by serotyping and amplification of the ribosomal DNA spacer regions. Appl Environ Microbiol 66:1544–1552. doi:10.1128/AEM.66.4.1544-1552.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belanger SD, Boissinot M, Menard C, Picard FJ, Bergeron MG (2002) Rapid detection of shiga toxin producing bacteria in feces by multiplex PCR with molecular beacons on the smart cycler. J Clin Microbiol 40:1436–1440. doi:10.1128/JCM.40.4.1436-1440.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boerlin P, McEwen SA, Boerlin PF, Wilson JB, Johnson RP, Gyles CL (1999) Associations between virulence factors of shiga toxin-producing Escherichia coli and disease in humans. J Clin Microbiol 37:497–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer D, Tamarat P, Maali A, Lounis B, Orrit M (2002) Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297:1160–1163. doi:10.1126/science.1073765

    Article  CAS  PubMed  Google Scholar 

  • Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B (2000) Salmonella nomenclature. J Clin Microbiol 38:2465–2467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brettar I, Hofle MG (1992) Influence of ecosystematic factors on survival of Escherichia coli after large-scale release into lake water mesocosms. Appl Environ Microbiol 58:2201–2210

    CAS  PubMed  PubMed Central  Google Scholar 

  • CDC (2003) Salmonella suveillance summary, 2002. US Department of Health and Human Services, United States of America

    Google Scholar 

  • Chao W, Ding R, Chen R (1987) Survival of pathogenic bacteria in environmental microcosms. Chin J Microb Immunol (Taipei) 20:339–348

    CAS  Google Scholar 

  • Chapman PA, Wright DJ, Siddons CA (1994) A comparison of immuno-magnetic separation and direct culture for the isolation of verocytotoxin-producing Escherichia coli O157 from bovine feces. J Med Microbiol 40:424–427

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Zhang LD, Paoli GC, Shi CL, Tu SI, Shi XM (2010) A real-time PCR method for the detection of Salmonella enterica from food using a target sequence identified by comparative genomic analysis. Int J Food Microbiol 137:168–174. doi:10.1016/j.ijfoodmicro.2009.12.004

    Article  CAS  PubMed  Google Scholar 

  • Corless CE, Guiver M, Borrow R, Edwards JV, Kaczmarski EB, Fox AJ (2000) Contamination and sensitivity issues with a real-time universal 16S rRNA PCR. J Clin Microbiol 38:1747–1752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crowther JR (1995) ELISA theory and practice. Humana Press, USA, 0-89603-279-5

    Google Scholar 

  • Cudjoe KS, Hagtvedt T, Dainty R (1995) Immunomagnetic separation of Salmonella from foods and their detection using immuno magnetic particle (IMP)-ELISA. Int J Food Microbiol 27:11–25. doi:10.1016/0168-1605(94)00134-R

    Article  CAS  PubMed  Google Scholar 

  • DuPont HL (2005) Travelers’ diarrhea: antimicrobial therapy and chemoprevention. Nat Clin Pract Gastroenterol Hepatol 2:191–198. doi:10.1038/ncpgasthep0142

    Article  CAS  PubMed  Google Scholar 

  • Espy MJ, Uhl JR, Sloan LM, Buckwalter SP, Jones MF, Vetter EA, Yao JDC, Wengenack NL, Rosenblatt JE, Cockerill FR III, Smith TF (2006) Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev 19:165–256. doi:10.1128/CMR.19.1.165-256.2006

    Article  CAS  PubMed  Google Scholar 

  • FDA/CFSAN – Food safety A to Z reference guide-Salmonella. FDA – Center for Food Safety and Applied Nutrition. 2008-07-03

    Google Scholar 

  • Fong T, Mansfield LS, Wilson DL, Schwab DJ, Molloy SL, Rose JB (2007) Massive microbiological groundwater contamination associated with a waterborne outbreak in Lake Erie, South Bass Island. Ohio Environ Health Perspect 115:856–864. doi:10.1289/ehp.9430

    Article  CAS  PubMed  Google Scholar 

  • Fotadar U, Zaveloff P, Terracio L (2005) Growth of Escherichia coli at elevated temperatures. J Bas Microbiol 45:403–404

    Article  Google Scholar 

  • Galan JE (1996) Molecular bases of Salmonella entry into host cells. Mol Microbiol 20:263–271

    Article  CAS  PubMed  Google Scholar 

  • Gourmelon M, Montet MP, Lozach S, Le Mennec C, Pommepuy M, Beutin L, Vernozy-Rozand C (2006) First isolation of shiga toxin 1d producing Escherichia coli variant strains in shellfish from coastal areas in France. J Appl Microbiol 100:85–97. doi:10.1111/j.1365-2672.2005.02753.x

    Article  CAS  PubMed  Google Scholar 

  • Grimont PAD, Weill FX (2007) Antigenic formulae of the Salmonella serovars. WHO Collaborating Centre for Reference and Research on Salmonella, 9th edn

    Google Scholar 

  • Gyles CL (2007) Shiga toxin-producing Escherichia coli: an overview. J Anim Sci 85(13 suppl):E45–E62

    Article  CAS  PubMed  Google Scholar 

  • Hamelin K, Guillaum B, El-Shaarawi A, Hill S, Edge TA, Bekal S, Fairbrother JM, Harel J, Maynard C, Masson L, Brousseau RA (2006) Virulence and antimicrobial resistance DNA microarray detects a high frequency of virulence genes in Escherichia coli isolates from great lakes recreational waters. Appl Environ Microbiol 72:4200–4206. doi:10.1128/AEM.00137-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamner S, Broadaway SC, Mishra VB, Tripathi A, Mishra RK, Pulcini E, Pyle BH, Ford TE (2007) Isolation of potentially pathogenic Escherichia coli O157:H7 from the Ganges River. Appl Environ Microbiol 73:2369–2372. doi:10.1128/AEM.00141-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibekwe AM, Watt PM, Grieve CM, Sharma VK, Lyons SR (2002) Multiplex fluorogenic real-time PCR for detection and quantification of Escherichia coli O157:H7 in dairy wastewater wetlands. Appl Environ Microbiol 68:4853–4862. doi:10.1128/AEM.68.10.4853-4862.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamshidi A, Bassami MR, Afshari NS (2008) Identification of Salmonella spp and Salmonella typhimurium by multiplex PCR-based assay from poultry caracasses in Mashhad. Iran Int J Vet Res 3:43–48

    Google Scholar 

  • Jyoti A, Ram S, Vajpayee P, Singh G, Dwivedi PD, Jain SK, Shanker R (2010) Contamination of surface and potable water in South Asia by Salmonellae: culture-independent quantification with molecular beacon real-time PCR. Sci Tot Environ 408:1256–1263. doi:10.1016/j.scitotenv.2009.11.056

    Article  CAS  Google Scholar 

  • Jyoti A, Singh SP, Yashpal M, Dwivedi PD, Shanker R (2011) Rapid detection of enterotoxigenic Escherichia coli gene using bio-conjugated gold nano-particles. J Biomed Nanotechnol 7:170–171. doi:10.1166/jbn.2011.1254

    Article  CAS  Google Scholar 

  • Kaper JB, Nataro JP, Mobley HLT (2004) Pathogenic Escherichia coli. Nat Rev 2:123–140. doi:10.1038/nrmicro818

    CAS  Google Scholar 

  • Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonak J, Lind K, Sindelka R, Sjoback R, Sjogreen B, Strombom L, Stahlberg A, Zoric N (2006) The real-time polymerase chain reaction. Mol Asp Med 27:95–125. doi:10.1016/j.mam.2005.12.007

    Article  CAS  Google Scholar 

  • Lakshminarayanan S, Jayalakshmy R (2015) Diarrheal diseases among children in India: current scenario and future perspectives. J Nat Sci Biol Med 6:24–28. doi:10.4103/0976-9668.149073

    Article  PubMed  PubMed Central  Google Scholar 

  • Lanata CF (2003) Studies of food hygiene and diarrhoeal disease. Int J Environ Health Res 13:175–183. doi:10.1080/0960312031000102921

    Article  Google Scholar 

  • Li M, Gu JD (2011) Advances in methods for detection of anaerobic ammonium oxidizing (anammox) bacteria. Appl Microbiol Biotechnol 90:1241–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lothigius Å, Sjöling Å, Svennerholm AM, Bölin I (2010) Survival and gene expression of enterotoxigenic Escherichia coli during long-term incubation in sea water and freshwater. J Appl Microbiol 108:1441–1449. doi:10.1111/j.1365-2672.2009.04548.x

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Liu J (2006) Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Prot 1:246–252. doi:10.1038/nprot.2006.38

    Article  Google Scholar 

  • Madigan M et al (2009) Brock biology of microorganisms, 12th edn. Pearson Education, San Francisco

    Google Scholar 

  • Maeng JS, Kim N, Kim CT, Han SR, Lee YJ, Lee SW, Lee MH, Cho YJ (2012) Rapid detection of food pathogens using RNA aptamers-immobilized slide. J Nanosci Nanotechnol 12:5138–5142. doi:10.1166/jnn.2012.6369

    Article  CAS  PubMed  Google Scholar 

  • Magliulo M, Simoni P, Guardigli M, Michelini E, Luciani M, Lelli R, Roda A (2007) A rapid multiplexed chemiluminescent immunoassay for the detection of Escherichia coli O157:H7, Yersinia enterocolitica, Salmonella typhimurium, and Listeria monocytogenes pathogen bacteria. J Agr Food Chem 55:4933–4939. doi:10.1021/jf063600b

    Article  CAS  Google Scholar 

  • Malorny B, Hoorfar J, Bunge C, Helmuth R (2003) Multicenter validation of the analytical accuracy of Salmonella PCR: towards an international standard. Appl Environ Microbiol 69:290–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malorny B, Bunge C, Helmuth R (2007) A real-time PCR for the detection of Salmonella Enteritidis in poultry meat and consumption eggs. J Microbiol Meth 70:245–251

    Article  CAS  Google Scholar 

  • McGuinness S, McCabe E, O'Regan E, Dolan A, Duffy G, Burgess C, Fanning S, Barry T, O'Grady J (2009) Development and validation of a rapid real-time PCR based method for the specific detection of Salmonella on fresh meat. Meat Sci 83:555–562. doi:10.1016/j.meatsci.2009.07.004

    Article  CAS  PubMed  Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609. doi:10.1038/382607a0

    Article  CAS  PubMed  Google Scholar 

  • Nagy B, Fekete PZ (2005) Enterotoxigenic Escherichia coli in veterinary medicine. Int J Med Microbiol 295:443–454. doi:10.1016/j.ijmm.2005.07.003

    Article  CAS  PubMed  Google Scholar 

  • Nakao H, Takeda T (2000) Escherichia coli shiga toxin. J Nat Toxins 9:299–313

    CAS  PubMed  Google Scholar 

  • Nataro JP, Kaper JB (1998) Diarrheagenic Escherichia coli. Clin Microbiol Rev 1:142–201

    Google Scholar 

  • Navas J, Ortiz S, Lopez P, Jantzen MM, Lopez V, Martinez-Suarez JV (2006) Evaluation of effects of primary and secondary enrichment for the detection of Listeria monocytogenes by real-time PCR in retail ground chicken meat. Foodborn Pathog Dis 3:347–354

    Article  CAS  Google Scholar 

  • Newell DG, Koopmans M, Verhoef L, Duizer E, Kane AA, Sprong H, Opsteegh M, Langelaar M, Threfall J, Scheutz F, van der Giessen JV, Kruse H (2010) Food-borne diseases–the challenges of 20 years ago still persist while new ones continue to emerge. Int J Food Microbiol 139:3–15. doi:10.1016/j.ijfoodmicro.2010.01.021

    Article  Google Scholar 

  • Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40:4128–4158. doi:10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-S

    Article  CAS  Google Scholar 

  • Ochiai RL, Acosta CJ, Holliday MCD, Baiqing D, Bhattacharya SK, Agtini MD, Bhutta ZA, Canh DG, Alim M, Shin S, Wain J, Page AL, Albert MJ, Farrar J, Elyazeed RA, Pang T, Galindo CM, Seidlein L, Clemens JD, the Domi Typhoid Study Group (2008) A study of typhoid fever in five Asian countries: disease burden and implications for controls. Bull World Health Organ 86:260–268. doi:10.1590/S0042-96862008000400010

    Article  PubMed  PubMed Central  Google Scholar 

  • O'Regan E, McCabe E, Burgess C, McGuinness S, Barry T, Duffy G, Whyte P, Fanning S (2008) Development of a real-time multiplex PCR assay for the detection of multiple Salmonella serotypes in chicken samples. BMC Microbiol 8:156. doi:10.1186/1471-2180-8-156

    Article  PubMed  PubMed Central  Google Scholar 

  • Orsi RH, Stoppe NC, Sato MIZ, Gomes TAT, Prado PI, Manfio GP, Ottoboni LMM (2007) Genetic variability and pathogenicity potential of Escherichia coli isolated from recreational water reservoirs. Res Microbiol 158:420–427. doi:10.1016/j.resmic.2007.02.009

    Article  CAS  Google Scholar 

  • Pandey P, Singh SP, Arya SK, Sharma A, Datta M, Malhotra BD (2008) Gold nanoparticle-polyaniline composite films for glucose sensing. J Nanosci Nanotechnol 8:3158–3163. doi:10.1166/jnn.2008.349

    Article  CAS  PubMed  Google Scholar 

  • Parker WF, Mee BJ (1982) Survival of Salmonella adelaide and fecal coliforms in coarse sands of the swan costal plain, Western Australia. Appl Environ Microbiol 43:981–986

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paton JC, Paton AW (1998) Pathogenesis and diagnosis of shiga toxin-producing Escherichia coli infections. Clin Microbiol Rev 11:450–479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pavankumar AR, Sankaran K (2008) The need and new tools for surveillance of Escherichia coli pathogens. Food Technol Biotechnol 46:125–145

    CAS  Google Scholar 

  • Prüss-Üstün A, Corvalán C (2006) Preventing disease through healthy environments: toward an estimate of the environmental burden of disease. The World Health Organization, Geneva

    Google Scholar 

  • Qadri F, Svennerholm AM, Faruque AS, Sack RB (2005) Enterotoxigenic Escherichia coli in developing countries: epidemiology, microbiology, clinical features, treatment, and prevention. Clin Microbiol Rev 18:465–483. doi:10.1128/CMR.18.3.465-483.2005

    Article  PubMed  PubMed Central  Google Scholar 

  • Ram S, Vajpayee P, Shanker R (2007) Prevalence of multi-antimicrobial-agent resistant, Shiga toxin and enterotoxin producing Escherichia coli in surface waters of River Ganga. Environ Sci Technol 41:7383–7388. doi:10.1021/es0712266

    Article  CAS  PubMed  Google Scholar 

  • Ram S, Vajpayee P, Shanker ’R (2008a) Contamination of potable water distribution systems by multiantimicrobial-resistant enterohemorrhagic Escherichia coli. Environ Health Perspect 116:448–452. doi:10.1289/ehp.10809

    Google Scholar 

  • Ram S, Vajpayee P, Shanker R (2008b) Rapid culture-independent quantitative detection of enterotoxigenic Escherichia coli in surface waters by real-time PCR with molecular beacon. Environ Sci Technol 42:4577–4582. doi:10.1021/es703033u

    Article  CAS  PubMed  Google Scholar 

  • Ram S, Vajpayee P, Tripathi U, Singh RL, Seth PK, Shanker R (2008c) Determination of antimicrobial resistance and virulence gene signatures in surface water isolates of Escherichia coli. J Appl Microbiol 105:1899–1908. doi:10.1111/j.1365-2672.2008.03879.x

    Article  CAS  PubMed  Google Scholar 

  • Ram S, Vajpayee P, Dwivedi PD, Shanker R (2011) Culture-free detection and enumeration of STEC in water. Ecotoxicol Environ Saf 74:551–557. doi:10.1016/j.ecoenv.2011.01.019

    Article  CAS  PubMed  Google Scholar 

  • Robinson SE, Wright EJ, Hart CA, Bennett M, French NP (2004) Intermittent and persistent shedding of Escherchia coli O157 in cohorts of naturally infected calves. J Appl Microbiol 94:1045–1053. doi:10.1111/j.1365-2672.2004.02390.x

    Article  Google Scholar 

  • Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562. doi:10.1021/cr030067f

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Hosokawa K, Maeda M (2003) Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J Am Chem Soc 125:8102–8103

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Hosokawa K, Maeda M (2007) Colorimetric biosensors based on DNA-nanoparticle conjugates. Anal Sci 23:17–20. doi:10.2116/analsci.23.17

    Article  PubMed  Google Scholar 

  • Schmidt H, Hensel M (2004) Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev 17:14–56. doi:10.1128/CMR.17.1.14-56.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schofield CL, Field RA, Russell DA (2007) Glyconanoparticles for the colorimetric detection of cholera toxin. Anal Chem 79:1356–1361. doi:10.1021/ac061462j

    Article  CAS  PubMed  Google Scholar 

  • Sharma V (2006) Real-time reverse transcription-multiplex PCR for simultaneous: detection of rfbE and eae genes for Escherichia coli O157:H7. Mol Cell Probes 20:298–306. doi:10.1016/j.mcp.2006.03.001

    Article  CAS  PubMed  Google Scholar 

  • Shea JE, Hensel M, Gleeson C, Holden DW (1996) Identification of a virulence locus encoding a second type III secretion system in Salmonella Typhimurium. Proc Natl Acad Sci U S A 93:2593–2597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shelton DR, Karns JS, Higgins JA, VanKesel JA, Perdue ML, Belt KT, Anelli JR, Debroy C (2006) Impact of microbial diversity on rapid detection of enterohemorraghic Escherichia coli in surface waters. FEMS Microbiol Lett 261:95–1011. doi:10.1111/j.1574-6968.2006.00334.x

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Sharma S, Nara S (2015) Evaluation of gold nanoparticle based lateral flow assays for diagnosis of enterobacteriaceae members in food and water. Food Chem 170:470–483. doi:10.1016/j.foodchem.2014.08.092

    Article  CAS  PubMed  Google Scholar 

  • Sjöling Å, Wiklund G, Savarino SJ, Cohen DI, Svennerholm AM (2007) Comparative analyses of phenotypic and genotypic methods for detection of enterotoxigenic Escherichia coli (ETEC) toxins and colonisation factors. J Clin Microbiol 45:3295–3301. doi:10.1128/JCM.00471-07

    Article  PubMed  PubMed Central  Google Scholar 

  • Stevens G, Mascarenhas M, Mathers C (2009) Global health risks: progress and challenges. Bull World Health Organ 87:646–646. doi:10.2471/BLT.09.070565

    Article  PubMed  PubMed Central  Google Scholar 

  • Storhoff JJ, Lucas AD, Garimella V, Bao YP, Muller UR (2004) Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nat Biotechnol 22:883–887. doi:10.1038/nbt977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sur D, Dutta S, Sarkar BL, Manna B, Bhattacharya MK, Datta KK, Saha A, Dutta B, Pazhani GP, Choudhuri AR, Bhattacharya SK (2007) Occurrence, significance & molecular epidemiology of cholera outbreaks in West Bengal. Indian J Med Res 125:772–776

    PubMed  Google Scholar 

  • Tarr PI, Gordon CA, Chandler WL (2005) Shiga toxin-producing Escherichia coli and the haemolytic uraemic syndrome. Lancet 365:1073–1086. doi:10.1016/S0140-6736(05)71144-2

    CAS  PubMed  Google Scholar 

  • Todar K (2008) Pathogenic Escherichia coli. In: Todar’s online textbook on bacteriology. University of Wisconsin, Madison, Dept. of Bacteriology, United States of America

    Google Scholar 

  • Tomar RS, Jyoti A (2015) Designing, computation and in-silico validation of real time PCR primers and molecular beacon probe for quantitative detection of Salmonellae. Pharmanest 6:2620–2624

    CAS  Google Scholar 

  • Topping MC, Gally D, Low C, Matthews L, Woolhouse M (2008) Super-shedding and the link between human infection and livestock carriage of Escherichia coli O157. Nat Rev Microbiol 6:904–912. doi:10.1038/nrmicro2029

    Article  Google Scholar 

  • Valdivieso-Garcia A, Riche E, Abubakar O, Waddell TE, Brooks BW (2001) A double antibody sandwich enzyme-linked immunosorbent assay for the detection of Salmonella using biotinylated monoclonal antibodies. J Food Prot 64:1166–1171

    CAS  PubMed  Google Scholar 

  • Voetsch AC, Gilder TJV, Angulo FJ, Farley MM, Shallow S, Marcus R (2004) Food Net estimate of the burden of illness caused by non-typhoidal Salmonella infections in the United States. Clin Infect Dis 38:27–34. doi:10.1086/381578

    Article  Google Scholar 

  • WHO (2003) Quantifying selected major risks to health: the world health report, 2002 (chapter 4). World Health Organization, Geneva

    Google Scholar 

  • WHO (2008) Water quality interventions to prevent diarrhoea: cost and cost-effectiveness. WHO Press, Geneva, Switzerland

    Google Scholar 

  • Zahraei ST, Tadjbakhsh H, Atashparvar N, Nadalian MG, Mahzounieh MR (2007) Detection and identification of Salmonella typhimurium in bovine diarrhoeic fecal samples by immunomagnetic separation and multiplex PCR assay. Zoonoses Public Health 54:231–236. doi:10.1111/j.1863-2378.2007.01061.x

    Article  Google Scholar 

  • Zhao W, Chiuman W, Lam J, McManus SA, Chen W, Cui Y, Pelton R, Brook MA, Li Y (2008) DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors. J Am Chem Soc 130:3610–3618. doi:10.1021/ja710241b

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Huang PJJ, Ding J, Liu J (2014) Aptamer-based biosensors for biomedical diagnostics. Analyst 139:2627. doi:10.1039/C4AN00132J

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We wish to express our sincere acknowledgement to Dr. Ashok Kumar Chauhan, President, RBEF parent organization of Amity University Madhya Pradesh (AUMP), Dr. Aseem Chauhan, Additional President, RBEF and chairman of AUMP; Lt. Gen. V.K. Sharma, AVSM (Retd.), Vice Chancellor of AUMP, Gwalior, for providing their valuable support, necessary facilities and encouragement throughout.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag Jyoti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jyoti, A., Tomar, R.S., Shanker, R. (2016). Nanosensors for the Detection of Pathogenic Bacteria. In: Ranjan, S., Dasgupta, N., Lichtfouse, E. (eds) Nanoscience in Food and Agriculture 1. Sustainable Agriculture Reviews, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-39303-2_5

Download citation

Publish with us

Policies and ethics