Skip to main content

Sparse Subgraphs for 2-Connectivity in Directed Graphs

  • Conference paper
  • First Online:
Experimental Algorithms (SEA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9685))

Included in the following conference series:

  • 1056 Accesses

Abstract

Let G be a strongly connected directed graph. We consider the problem of computing the smallest strongly connected spanning subgraph of G that maintains the pairwise 2-vertex-connectivity of G, i.e., the 2-vertex-connected blocks of G (2VC-B). We provide linear-time approximation algorithms for this problem that achieve an approximation ratio of 6. Based on these algorithms, we show how to approximate, in linear time, within a factor of 6 the smallest strongly connected spanning subgraph of G that maintains respectively: both the 2-vertex-connected blocks and the 2-vertex-connected components of G (2VC-B-C); all the 2-connectivity relations of G (2C), i.e., both the 2-vertex- and the 2-edge-connected components and blocks. Moreover, we provide heuristics that improve the size of the computed subgraphs in practice, and conduct a thorough experimental study to assess their merits in practical scenarios.

G.F. Italiano and N. Parotsidis—Partially supported by MIUR under Project AMANDA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout, we use consistently the term bridge to refer to a bridge of a flow graph G(s) and the term strong bridge to refer to a strong bridge in the original graph G.

  2. 2.

    This follows from the fact that in the sparse subgraph the k vertices in blocks must have indegree at least two, while the remaining \(n-k\) vertices must have indegree at least one, since we seek for a strongly connected spanning subgraph.

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall Inc., Upper Saddle River (1993)

    MATH  Google Scholar 

  2. Alstrup, S., Harel, D., Lauridsen, P.W., Thorup, M.: Dominators in linear time. SIAM J. Comput. 28(6), 2117–2132 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Buchsbaum, A.L., Georgiadis, L., Kaplan, H., Rogers, A., Tarjan, R.E., Westbrook, J.R.: Linear-time algorithms for dominators and other path-evaluation problems. SIAM J. Comput. 38(4), 1533–1573 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheriyan, J., Thurimella, R.: Approximating minimum-size \(k\)-connected spanning subgraphs via matching. SIAM J. Comput. 30(2), 528–560 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Edmonds, J.: Edge-disjoint branchings. In: Rustin, B. (ed.) Combinatorial Algorithms, pp. 91–96. Academic Press, New York (1972)

    Google Scholar 

  6. Fakcharoenphol, J., Laekhanukit, B.: An \(o(\log ^2{k})\)-approximation algorithm for the \(k\)-vertex connected spanning subgraph problem. In: Proceedings of the 40th ACM Symposium on Theory of Computing, STOC 2008, pp. 153–158, New York, NY, USA, ACM (2008)

    Google Scholar 

  7. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8, 399–404 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set union. J. Comput. Syst. Sci. 30(2), 209–221 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  10. Georgiadis, L.: Approximating the smallest 2-vertex connected spanning subgraph of a directed graph. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 13–24. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Georgiadis, L., Italiano, G.F., Laura, L., Parotsidis, N.: 2-Edge connectivity in directed graphs. SODA 2015, pp. 1988–2005 (2015)

    Google Scholar 

  12. Georgiadis, L., Italiano, G.F., Laura, L., Parotsidis, N.: 2-Vertex connectivity in directed graphs. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 605–616. Springer, Heidelberg (2015)

    Google Scholar 

  13. Georgiadis, L., Italiano, G.F., Papadopoulos, C., Parotsidis, N.: Approximating the smallest spanning subgraph for 2-edge-connectivity in directed graphs. In: Bansal, N., Finocchi, I. (eds.) Algorithms - ESA 2015. LNCS, vol. 9294, pp. 582–594. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48350-3_49

    Chapter  Google Scholar 

  14. Georgiadis, L., Italiano, G.F., Parotsidis, N.: A new framework for strong connectivity and 2-connectivity in directed graphs. CoRR, November 2015. arXiv:1511.02913

  15. Georgiadis, L., Tarjan, R.E.: Dominator tree certification and divergent spanning trees. ACM Trans. Algorithms 12(1), 11:1–11:42 (2015)

    Article  MathSciNet  Google Scholar 

  16. Henzinger, M., Krinninger, S., Loitzenbauer, V.: Finding 2-edge and 2-vertex strongly connected components in quadratic time. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 713–724. Springer, Heidelberg (2015)

    Google Scholar 

  17. Italiano, G.F., Laura, L., Santaroni, F.: Finding strong bridges and strong articulation points in linear time. Theor. Comput. Sci. 447, 74–84 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jaberi, R.: Computing the \(2\)-blocks of directed graphs. RAIRO-Theor. Inf. Appl. 49(2), 93–119 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jaberi, R.: On computing the 2-vertex-connected components of directed graphs. Discrete Applied Mathematics, (2015, to appear)

    Google Scholar 

  20. Khuller, S., Raghavachari, B., Young, N.E.: Approximating the minimum equivalent digraph. SIAM J. Comput. 24(4), 859–872 (1995). Announced at SODA 1994, 177–186

    Article  MathSciNet  MATH  Google Scholar 

  21. Khuller, S., Raghavachari, B., Young, N.E.: On strongly connected digraphs with bounded cycle length. Discrete Appl. Math. 69(3), 281–289 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kortsarz, G., Nutov, Z.: Approximating minimum cost connectivity problems. In: Gonzalez, T.F. (ed.) Approximation Algorithms and Metaheuristics. Chapman & Hall/CRC, Boca Raton (2007)

    Google Scholar 

  23. Laekhanukit, B., Oveis Gharan, S., Singh, M.: A rounding by sampling approach to the minimum size k-arc connected subgraph problem. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 606–616. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Nagamochi, H., Ibaraki, T.: Algorithmic Aspects of Graph Connectivity, 1st edn. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  25. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tarjan, R.E.: Edge-disjoint spanning trees and depth-first search. Acta Informatica 6(2), 171–185 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. Vetta, A.: Approximating the minimum strongly connected subgraph via a matching lower bound. In: SODA, pp. 417–426 (2001)

    Google Scholar 

  28. Zhao, L., Nagamochi, H., Ibaraki, T.: A linear time 5/3-approximation for the minimum strongly-connected spanning subgraph problem. Inf. Process. Lett. 86(2), 63–70 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charis Papadopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Georgiadis, L., Italiano, G.F., Karanasiou, A., Papadopoulos, C., Parotsidis, N. (2016). Sparse Subgraphs for 2-Connectivity in Directed Graphs. In: Goldberg, A., Kulikov, A. (eds) Experimental Algorithms. SEA 2016. Lecture Notes in Computer Science(), vol 9685. Springer, Cham. https://doi.org/10.1007/978-3-319-38851-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-38851-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-38850-2

  • Online ISBN: 978-3-319-38851-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics