Skip to main content

Resource Management in Sustainable Green HetNets with Renewable Energy Sources

  • Chapter
  • First Online:
5G Mobile Communications

Abstract

Green energy has become a promising alternative energy source for powering wireless cellular networks by effectively reducing the network operational expenditure (OPEX) and carbon footprints. However, green energy sources such as solar and wind are harvested from the environment and their availability and capacity are by nature unstable, which poses great challenges to achieve sustainable network operation. In this chapter, we study the energy sustainable performance of a green HetNet where the small cell base stations (SBSs) are powered by green energy sources. Specifically, we first develop an analytical framework to study the energy sustainability of each SBS. The energy buffer at each SBS is modeled as a G/G/1 queue with arbitrary patterns of energy charging and discharging. We apply the diffusion approximation to analyze the transient evolution of the energy buffer, and derive the probability distribution of the queue length and the energy depletion time for a given initial energy level. Based on the energy sustainability analysis, we propose a distributed admission control strategy at SBSs striking a balance between high resource utilization and energy sustainability in the green HetNet. Extensive simulations are conducted to validate the analytical framework and evaluate the sustainability performance of the green HetNets using the proposed distributed admission control scheme. The simulation results demonstrate that relaxing the admission control criteria for the SBSs can improve the resource utilization (i.e, power and spectrum) of the system when the energy is abundant, but can significantly degrade the resource utilization instead when the energy comes short due to poor sustainability performance (i.e., frequent depletion of the SBSs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the MBS, renewable energy source is the first choice. The electricity grid provides supplemental energy source to guarantee the power supply of the MBS at all times.

  2. 2.

    FCC opened 100 MHz spectrum in 5 GHz band for unlicensed use in 2014, and plans to open an additional 195 MHz spectrum in the near future. The abundant unlicensed spectrum band provides great potential for cellular operators to deploy high density small cells that operates in unlicensed 5 GHz band.

References

  1. Cisco White Paper, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update 2014–2019 (2015)

    Google Scholar 

  2. R. Zhang, M. Wang, L.X. Cai, Z. Zheng, X. Shen, L.L. Xie, LTE-unlicensed: The future of spectrum aggregation for cellular networks. IEEE Wirel. Commun. Mag., 22 (3), 150–159 (2015).

    Article  Google Scholar 

  3. OPERA-Net I/II, Optimising Power Efficiency in Mobile Radio Networks (2015). Available: http://projects.celticplus.eu/opera-net2/index.html

  4. Mobile VCE Project, Green radio (2013). Available: http://www.mobilevce.com/green-radio

  5. L.X. Cai, L. Cai, X. Shen, J.W. Mark, Resource management and QoS provisioning for IPTV over mmWave-based WPANs with directional antenna. Mob. Netw. Appl. 14 (2), 210–219 (2009)

    Article  Google Scholar 

  6. P. Grant, S. Fletcher, Mobile basestations: reducing energy. Eng. Technol. Mag. 6 (2), (2011) x

    Google Scholar 

  7. S. Navaratnarajah, A. Saeed, M. Dianati, M.A. Imran, Energy efficiency in heterogeneous wireless access networks. IEEE Wirel. Commun. Mag. 20 (5), 37–43 (2013)

    Article  Google Scholar 

  8. J.B. Rao, A.O. Fapojuwo, A survey of energy efficient resource management techniques for multicell cellular networks. IEEE Commun. Surv. Tutorials 16 (1), First Quarter (2014)

    Google Scholar 

  9. R. Zhang, M. Wang, Z. Zheng, X. Shen, L.L. Xie, Cross-layer carrier selection and power control for LTE-A uplink with carrier aggregation, in Proceedings of IEEE Globecom’13 (2013)

    Google Scholar 

  10. S. Mclaughlin, P.M. Grant, J.S. Thompson, H. Haas, D.I. Laurenson, C. Khirallah, Y. Hou, R. Wang, Techniques for improving cellular radio base station energy efficiency. IEEE Wirel. Commun. Mag. 18 (5), 10–17 (2011)

    Article  Google Scholar 

  11. X. Xiao, X. Tao, Y. Jia, J. Lu, An energy-efficient hybrid structure with resource allocation in OFDMA networks, in Proceedings of IEEE WCNC’11 (2011)

    Google Scholar 

  12. R. Xie, F.R. Yu, H. Ji, Y. Li, Energy-efficient resource allocation for heterogeneous cognitive radio networks with femtocells. IEEE Trans. Wirel. Commun. 11 (11), 3910–3920 (2012)

    Article  Google Scholar 

  13. G. Piro, M. Miozzo, G. Forte, N. Baldo, L.A. Grieco, G. Boggia, P. Dini, HetNets powered by renewable energy sources: sustainable next-generation cellular networks. IEEE Internet Comput. 17 (1), 32–39 (2013)

    Article  Google Scholar 

  14. H.S. Dhillon, Y. Li, P. Nuggehalli, Z. Pi, J.G. Andrews, Fundamentals of heterogeneous cellular networks with energy harvesting. IEEE Trans. Wirel. Commun. 13 (5), 2782–2797 (2014)

    Article  Google Scholar 

  15. Z. Zheng, X. Zhang, L.X. Cai, R. Zhang, X. Shen, Sustainable communication and networking in two-tier green cellular networks. IEEE Wirel. Commun. Mag. 21 (4), 47–53 (2014)

    Article  Google Scholar 

  16. T. Edler, S. Lundberg, Energy efficiency enhancements in radio access networks, in Ericsson Review (2004). Available: http://www.ericsson.com/ericsson/corpinfo/publications/review/2004_01/files/2004015.pdf

  17. X. Zhang, Z. Su, Z. Yan, W. Wang, Energy-efficiency study for two-tier heterogeneous networks (HetNets) under coverage performance constraints. Mob. Netw. Appl. 18 (4), 567–577 (2013)

    Google Scholar 

  18. H. Klessig, A.J. Fehske, G.P. Fettweis, Energy efficiency gains in interference-limited heterogeneous cellular mobile radio networks with random micro site deployment, in IEEE 34th Sarnoff Symposium (2011), pp. 1–6

    Google Scholar 

  19. L. Saker, S.E. Elayoubi, R. Combes, T. Chahed, Optimal control of wake up mechanisms of femtocells in heterogeneous networks. IEEE J. Sel. Areas Commun. 30 (3), 664–672 (2012)

    Article  Google Scholar 

  20. W. Zheng, W. Li, Y. Xie, X. Wen, Hybrid BS-cooperative power management scheme with self-organized sleep mode in virtual cell-based femto networks. Int. J. Distrib. Sens. Netw. 2012, 12 pp. (2012)

    Google Scholar 

  21. D. Cao, S. Zhou, Z. Niu, Improving the energy efficiency of two-tier heterogeneous cellular networks through partial spectrum reuse. IEEE Trans. Wirel. Commun. 12 (8), 4129–4141 (2013)

    Article  Google Scholar 

  22. R. Zhang, M. Wang, Z. Zheng, X. Shen, L.L. Xie, Stochastic geometric performance analysis for carrier aggregation in LTE-A systems, in Proceedings of IEEE ICC’14 (2014)

    Google Scholar 

  23. M. Lauridsen, H. Wang, P. Mogensen, LTE UE energy saving by applying carrier aggregation in a HetNet scenario, in Proceedings of IEEE VTC Spring’13 (2013)

    Google Scholar 

  24. A. Mesodiakaki, F. Adelantado, L. Alonso, C. Verikoukis, Energy-efficient user association in cognitive heterogeneous networks. IEEE Commun. Mag. 52 (7), 22–29 (2014)

    Article  Google Scholar 

  25. R. Zhang, Z. Zheng, M. Wang, X. Shen, L.L. Xie, Equivalent capacity in carrier aggregation-based LTE-A systems: a probabilistic analysis. IEEE Trans. Wirel. Commun. 13 (11), 6444–6460 (2014)

    Article  Google Scholar 

  26. Z. Xu, C. Yang, G.Y. Li, Y. Liu, S. Xu, Energy-efficient CoMP precoding in heterogeneous networks. IEEE Trans. Signal Process. 62 (4), 1005–1017 (2014)

    Article  MathSciNet  Google Scholar 

  27. K.M.S. Huq, S. Mumtaz, J. Bachmatiuk, J. Rodriguez, X. Wang, R.L. Aguiar, Green HetNet CoMP: energy efficiency analysis and optimization. IEEE Trans. Veh. Technol. 64, 4670–4683 (2014)

    Article  Google Scholar 

  28. J. Yang, S. Ulukus, Optimal packet scheduling in an energy harvesting communication systems. IEEE Trans. Commun. 60 (1), 220–230 (2012)

    Article  Google Scholar 

  29. K. Tutuncuoglu, A. Yener, Optimum transmission policies for battery limited energy harvesting nodes. IEEE Trans. Wirel. Commun. 11 (3), 1180–1189 (2012)

    Article  Google Scholar 

  30. O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, A. Yener, Transmission with energy harvesting nodes in fading wireless channels: optimal policies. IEEE J. Sel. Areas Commun. 29 (8), 1732–1743 (2011)

    Article  Google Scholar 

  31. X. Zhang, X. Shen, L.L. Xie, Joint subcarrier and power allocation for cooperative communications in LTE-advanced networks. IEEE Trans. Wirel. Commun. 13 (2), 658–668 (2014)

    Article  Google Scholar 

  32. J. Taneja, J. Jeong, D. Culler, Design, modeling, and capacity planning for micro-solar power sensor networks, Proceedings of IEEE ICPN’08 (2008)

    Google Scholar 

  33. A. Sayegh, T.D. Todd, M.N. Smadi, Resource allocation and cost in hybrid solar/wind powered WLAN mesh nodes, in Wireless Mesh Networks: Architectures and Protocols (Springer, New York, 2008), pp. 167–189

    Google Scholar 

  34. A. Farbod, T.D. Todd, Resource Allocation and Outage Control for Solar-Powered WLAN Mesh Networks. IEEE Trans. Mob. Comput. 6 (8), 960–970 (2007)

    Article  Google Scholar 

  35. Z. Zheng, L.X. Cai, M. Dong, X. Shen, H.V. Poor, Constrained AP placement with rate adaptation in green WLAN mesh networks, in Proceedings of IEEE GLOBECOM’11 (2011)

    Google Scholar 

  36. T. Yang, Z. Zheng, H. Liang, R. Deng, N. Cheng, X. Shen, Green energy and content aware data transmission in maritime wireless communication network. IEEE Trans. Intell. Transp. Syst. 16 (2), 751–762 (2015)

    Google Scholar 

  37. L.X. Cai, Y. Liu, T.H. Luan, X. Shen, J.W. Mark, H.V. Poor, Dimensioning network deployment and resource management in green mesh networks. IEEE Wirel. Commun. Mag. 18 (5), 58–65 (2011)

    Article  Google Scholar 

  38. E. Lattanzi, E. Regini, A. Acquaviva, A. Bogliolo, Energetic sustainability of routing algorithms for energy-harvesting wireless sensor networks. Comput. Commun. 30, 2976–2986 (2007). Available: http://dx.doi.org/10.1016/j.comcom.2007.05.035

    Article  Google Scholar 

  39. L.X. Cai, Y. Liu, T.H. Luan, X. Shen, J.W. Mark, H.V. Poor, Sustainability analysis and resource management for wireless mesh networks with renewable energy supplies. IEEE J. Sel. Areas Commun. 32 (2), 345–355 (2014)

    Article  Google Scholar 

  40. K. Huang, V.K.N. Lau, Enabling wireless power transfer in cellular networks: architecture, modelling and deployment. IEEE Trans. Wirel. Commun. 13, 902–912 (2014)

    Article  Google Scholar 

  41. K. Huang, V.O.K. Li, Renewables powered cellular networks: energy field and network coverage. IEEE Trans. Wirel. Commun., to appear

    Google Scholar 

  42. Z. Zheng, L.X. Cai, R. Zhang, X. Shen, H.V. Poor, RNP-SA: joint relay placement and sub-carrier allocation in wireless communication networks with sustainable energy. IEEE Trans. Wirel. Commun. 11 (10), 3818–3828 (2012)

    Article  Google Scholar 

  43. S. Wang, W. Guo, M.D. McDonnell, Downlink interference estimation without feedback for heterogeneous network interference avoidance, in Proc. IEEE ICT’14 (2014)

    Google Scholar 

  44. D.R. Cox, H.D. Miller, The Theory of Stochastic Processes (Chapman and Hall, London, 1965)

    MATH  Google Scholar 

  45. H. Kobayashi, Application of the diffusion approximation to queueing networks I: equilibrium queue distributions. J. ACM 21 (2), 316–328 (1974)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, R., Wang, M., Cai, L.X., Cheng, Y., Shen, X.(., Xie, LL. (2017). Resource Management in Sustainable Green HetNets with Renewable Energy Sources. In: Xiang, W., Zheng, K., Shen, X. (eds) 5G Mobile Communications. Springer, Cham. https://doi.org/10.1007/978-3-319-34208-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34208-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34206-1

  • Online ISBN: 978-3-319-34208-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics