Skip to main content

Abstract

Transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS) are noninvasive neuromodulatory techniques that deliver low-intensity currents facilitating or inhibiting spontaneous neuronal activity. These techniques have a number of advantages that have been applied in clinical settings; in particular, tDCS/tACS dose in principle is easily customized by varying electrode number, position, size, shape, and current. However, the ability to leverage this customization depends on how tDCS/tACS dose modulate the underling brain current flow. This relationship is not simple and can benefit from the use of computational models of current flow, personalized to individual subjects and cases. Tools for modeling range from Finite Element Method models to stand-alone GUI based software for clinicians. Many software packages can load individual’s MRI scans, allowing individualized therapy design. However, the challenge remains to design and interpret these models while remaining aware of their limitations. Current flow models alone cannot “make dose decisions,” but rather inform the rational design of electrotherapy. This is evidenced in exemplary studies combining computer modeling and clinical data, several examples of which are outlined in this chapter. Though modeling software is now widely available, newer generations of algorithms promise more precision and flexibility, and thus it is predicted that with increased validation, dissemination, simplification and dissemination of modeling tools, computational forward models of neuromodulation will become useful tools to guide the optimization of clinical electrotherapy. Essential for this adoption and refinement is an appreciation by clinicians of the uses and limitations of computational models, and conversely understanding by engineers and programmers of what software functions are relevant to clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guleyupoglu B, Schestatsky P, Edwards D, Fregni F, Bikson M. Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations. J Neurosci Methods. 2013;219(2):297–311.

    Article  PubMed  Google Scholar 

  2. Boggio PS, Ferrucci R, Rigonatti SP, Covre P, Nitsche M, Pascual-Leone A, et al. Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease. J Neurol Sci. 2006;249:31–8.

    Article  PubMed  Google Scholar 

  3. Datta A, Dmochowski JP, Guleyupoglu B, Bikson M, Fregni F. Cranial electrotherapy stimulation and transcranial pulsed current stimulation: a computer based high-resolution modeling study. Neuroimage. 2013;65:280–7.

    Article  PubMed  Google Scholar 

  4. Lindenberg R, Zhu LL, Schlaug G. Combined central and peripheral stimulation to facilitate motor recovery after stroke: the effect of number of sessions on outcome. Neurorehabil Neural Repair. 2012;2012:18.

    Google Scholar 

  5. Peterchev AV, Wagner TA, Miranda PC, Nitsche MA, Paulus W, Lisanby SH, et al. Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices. Brain Stimul. 2012;5:435–53.

    Article  PubMed  Google Scholar 

  6. Salvador R, Mekonnen A, Ruffini G, Miranda PC. Modeling the electric field induced in a high resolution head model during transcranial current stimulation. Conf Proc IEEE Eng Med Biol Soc. 2010;2010(2010):2073–6.

    CAS  PubMed  Google Scholar 

  7. Suh HS, Kim SH, Lee WH, Kim TS. Realistic simulation of transcranial direct current stimulation via 3-d high resolution finite element analysis: effect of tissue anisotropy. Conf Proc IEEE Eng Med Biol Soc. 2009;2009(2009):638–41.

    PubMed  Google Scholar 

  8. Suh HS, Lee WH, Cho YS, Kim JH, Kim TS. Reduced spatial focality of electrical field in tDCS with ring electrodes due to tissue anisotropy. Conf Proc IEEE Eng Med Biol Soc. 2010;1:2053–6.

    Google Scholar 

  9. Truong DQ, Magerowski G, Blackburn GL, Bikson M, Alonso-Alonso M. Computational modeling of transcranial direct current stimulation (tDCS) in obesity: impact of head fat and dose guidelines. Neuroimage Clin. 2013;2:759–66.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Turkeltaub PE, Benson J, Hamilton RH, Datta A, Bikson M, Coslett HB. Left lateralizing transcranial direct current stimulation improves reading efficiency. Brain Stimul. 2012;5(3):201–7.

    Article  PubMed  Google Scholar 

  11. Radman T, Ramos RL, Brumberg JC, Bikson M. Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul. 2009;2:215–28. 28 e1–3.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Reato D, Rahman A, Bikson M, Parra LC. Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J Neurosci. 2010;30:15067–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ardolino G, Bossi B, Barbieri S, Priori A. Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimultion of the human brain. J Physiol. 2005;568:653–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zentner J. Noninvasive motor evoked potential monitoring during neurosurgical operations on the spinal cord. Neurosurgery. 1989;24:709–12.

    Article  CAS  PubMed  Google Scholar 

  15. Player MJ, Taylor JL, et al. Increase in PAS-induced neuroplasticity after a treatment course of transcranial direct current stimulation for depression. J Affect Disord. 2014;167:140–7.

    Article  PubMed  Google Scholar 

  16. Brunoni AR, Nitsche MA, Bolognini N, Bikson M, Wagner T, Merabet L, et al. Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul. 2012;5(3):175–95.

    Article  PubMed  Google Scholar 

  17. Edwards DJ, Krebs HI, Rykman A, Zipse J, Thickbroom GW, Mastaglia FL, et al. Raised corticomotor excitability of M1 forearm area following anodal tDCS is sustained during robotic wrist therapy in chronic stroke. Restor Neurol Neurosci. 2009;27(3):199–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bikson M, Name A, Rahman A. Origins of specificity during tDCS: anatomical, activity-selective, and input-bias mechanisms. Front Hum Neurosci. 2013;7:688.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Moreno-Duarte I, Morse LR, Alam M, Bikson M, Zafonte R, Fregni F. Targeted therapies using electrical and magnetic neural stimulation for the treatment of chronic pain in spinal cord injury. Neuroimage. 2014;85(Pt 3):1003–13.

    Article  PubMed  Google Scholar 

  20. Ruffini G, Wendling F, Merlet I, Molaee-Ardekani B, Mekonnen A, Salvador R, et al. Transcranial current brain stimulation (tCS): models and technologies. IEEE Trans Neural Syst Rehabil Eng. 2013;21(3):333–45.

    Article  PubMed  Google Scholar 

  21. Nitsche MA, Doemkes S, Karakose T, Antal A, Liebetanz D, Lang N, et al. Shaping the effects of transcranial direct current stimulation of the human motor cortex. J Neurophysiol. 2007;97(4):3109–17.

    Article  CAS  PubMed  Google Scholar 

  22. Faria P, Hallett M, Miranda PC. A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS. J Neural Eng. 2011;8(6):066017.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Miranda PC, Faria P, Hallett M. What does the ratio of injected current to electrode area tell us about current density in the brain during tDCS? Clin Neurophysiol. 2009;120(6):1183–7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bikson M, Datta A, Rahman A, Scaturro J. Electrode montages for tDCS and weak transcranial electrical stimulation: role of “return” electrode’s position and size. Clin Neurophysiol. 2010;121(12):1976–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. DaSilva AF, Mendonca ME, Zaghi S, Lopes M, DosSantos MF, Spierings EL, et al. tDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine. Headache. 2012;52(8):1283–95.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Datta A, Baker JM, Bikson M, Fridriksson J. Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient. Brain Stimul. 2011;4(3):169–74.

    Article  PubMed  Google Scholar 

  27. Datta A, Bansal V, Diaz J, Patel J, Reato D, Bikson M. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2009;2:201–7.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Datta A, Bikson M, Fregni F. Transcranial direct current stimulation in patients with skull defects and skull plates: high-resolution computational FEM study of factors altering cortical current flow. Neuroimage. 2010;52(4):1268–78.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Datta A, Elwassif M, Battaglia F, Bikson M. Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis. J Neural Eng. 2008;5(2):163–74.

    Article  PubMed  Google Scholar 

  30. Halko MA, Datta A, Plow EB, Scaturro J, Bikson M, Merabet LB. Neuroplastic changes following rehabilitative training correlate with regional electrical field induced with tDCS. Neuroimage. 2011;57(3):885–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mendonca ME, Santana MB, Baptista AF, Datta A, Bikson M, Fregni F, et al. Transcranial DC stimulation in fibromyalgia: optimized cortical target supported by high-resolution computational models. J Pain. 2011;12(5):610–7.

    Article  PubMed  Google Scholar 

  32. Miranda PC, Lomarev M, Hallett M. Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol. 2006;117(7):1623–9.

    Article  PubMed  Google Scholar 

  33. Oostendorp TF, Hengeveld YA, Wolters CH, Stinstra J, van Elswijk G, Stegeman DF. Modeling transcranial DC stimulation. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:4226–9.

    PubMed  Google Scholar 

  34. Parazzini M, Fiocchi S, Rossi E, Paglialonga A, Ravazzani P. Transcranial direct current stimulation: estimation of the electric field and of the current density in an anatomical head model. IEEE Trans Biomed Eng. 2011;58(6):1773–80.

    Article  PubMed  Google Scholar 

  35. Sadleir RJ, Vannorsdall TD, Schretlen DJ, Gordon B. Transcranial direct current stimulation (tDCS) in a realistic head model. Neuroimage. 2010;51(4):1310–8.

    Article  PubMed  Google Scholar 

  36. Wagner T, Fregni F, et al. Transcranial direct current stimulation: a computer-based human model study. Neuroimage. 2007;35(3):1113–24.

    Article  PubMed  Google Scholar 

  37. Dmochowski JP, Datta A, Bikson M, Su Y, Parra LC. Optimized multi-electrode stimulation increases focality and intensity at target. J Neural Eng. 2011;8(4):046011.

    Article  PubMed  Google Scholar 

  38. Jung Y-J, Kim J-H, Im C-H. COMETS: a MATLAB toolbox for simulating local electric fields generated by transcranial direct current stimulation (tDCS). Biomed Eng Lett. 2013;3:39–46.

    Article  Google Scholar 

  39. Thielscher A, Antunes A, et al. Field modeling for transcranial magnetic stimulation: a useful tool to understand the physiological effects of TMS? 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC). 2015.

    Google Scholar 

  40. Antal A, Bikson M, Datta A, Lafon B, Dechent P, Parra LC, et al. Imaging artifacts induced by electrical stimulation during conventional fMRI of the brain. Neuroimage. 2014;85 Pt 3:1040–7.

    Article  PubMed  Google Scholar 

  41. Datta A, Zhou X, Su Y, Parra LC, Bikson M. Validation of finite element model of transcranial electrical stimulation using scalp potentials: implications for clinical dose. J Neural Eng. 2013;10:036018.

    Article  PubMed  Google Scholar 

  42. Kuo H-I, Bikson M, Datta A, Minhas P, Paulus W, Kuo M-F, et al. Comparing cortical plasticity induced by conventional and high-definition 4 × 1 ring tDCS: a neurophysiological study. Brain Stimul. 2013;6(4):644–8.

    Article  PubMed  Google Scholar 

  43. Edwards D, Cortes M, Datta A, Minhas P, Wassermann EM, Bikson M. Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS. Neuroimage. 2013;74:266–75.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Datta A, Truong D, Minhas P, Parra LC, Bikson M. Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models. Front Psychiatry. 2012;3:91.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Borckardt J, Bikson M, Frohman H, Reeves S, Datta A, Bansal V, et al. A pilot study of the tolerability, safety and effects of high-definition transcranial direct current stimulation (HD-tDCS) on pain perception. J Pain. 2012;13(2):112–20.

    Article  PubMed  Google Scholar 

  46. Rush S, Driscoll DA. Current distribution in the brain from surface electrodes. Anesth Analg. 1968;47(6):717–23.

    Article  CAS  PubMed  Google Scholar 

  47. Huang Y, Dmochowski JP, Su Y, Datta A, Rorden C, Parra LC. Automated MRI segmentation for individualized modeling of current flow in the human head. J Neural Eng. 2013;10:066004.

    Article  PubMed  Google Scholar 

  48. Parazzini M, Fiocchi S, Ravazzani P. Electric field and current density distribution in an anatomical head model during transcranial direct current stimulation for tinnitus treatment. Bioelectromagnetics. 2012;33(6):476–87.

    Article  PubMed  Google Scholar 

  49. Laakso I, Tanaka S, Koyama S, De Santis V, Hirata A. Inter-subject variability in electric fields of motor cortical tDCS. Brain Stimul. 2015;8(5):906–13.

    Article  PubMed  Google Scholar 

  50. Sadleir R, Argibay A. Modeling skull electrical properties. Ann Biomed Eng. 2007;35:1699–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shahid S, Wen P, Ahfock T, editors. Effect of fat and muscle tissue conductivity on cortical currents – a tDCS study. 2011 IEEE/ICME International Conference on Complex Medical Engineering (CME), IEEE. 2011.

    Google Scholar 

  52. Minhas P, Bikson M, Woods AJ, Rosen AR, Kessler SK, editors. Transcranial direct current stimulation in pediatric brain: a computational modeling study. 2012 Annual international conference of the IEEE engineering in medicine and biology society (EMBC). 2012.

    Google Scholar 

  53. Minhas P, Bikson M, Woods AJ, Rosen AR, Kessler SK. Transcranial direct current stimulation in pediatric brain: a computational modeling study. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:859–62.

    PubMed  PubMed Central  Google Scholar 

  54. Shahid S, Wen P, Ahfock T. Numerical investigation of white matter anisotropic conductivity in defining current distribution under tDCS. Comput Methods Programs Biomed. 2013;109:48–64.

    Article  PubMed  Google Scholar 

  55. Bikson M, Datta A. Guidelines for precise and accurate computational models of tDCS. Brain Stimul. 2012;5(3):430–1.

    Article  PubMed  Google Scholar 

  56. Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57:1899–901.

    Article  CAS  PubMed  Google Scholar 

  57. Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, Miyakawa H, et al. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol. 2004;557:175–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Miranda PC, Correia L, Salvador R, Basser PJ. The role of tissue heterogeneity in neural stimulation by applied electric fields. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:1715–8.

    PubMed  Google Scholar 

  59. Joucla S, Yvert B. The “mirror” estimate: an intuitive predictor of membrane polarization during extracellular stimulation. Biophys J. 2009;96(9):3495–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Truong DQ, Hüber M, Xie X, Datta A, Rahman A, Parra LC, et al. Clinician accessible tools for GUI computational models of transcranial electrical stimulation: BONSAI and SPHERES. Brain Stimul. 2014;7(4):521–4.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bikson M, Rahman A, Datta A, Fregni F, Merabet L. High-resolution modeling assisted design of customized and individualized transcranial direct current stimulation protocols. Neuromodulation. 2012;15(4):306–15.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Coffman BA, Trumbo MC, Clark VP. Enhancement of object detection with transcranial direct current stimulation is associated with increased attention. BMC Neurosci. 2012;13:108.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Dmochowski JP, Datta A, Huang Y, Richardson JD, Bikson M, Fridriksson J, et al. Targeted transcranial direct current stimulation for rehabilitation after stroke. Neuroimage. 2013;75:12–9.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Medina J, Beauvais J, Datta A, Bikson M, Coslett HB, Hamilton RH. Transcranial direct current stimulation accelerates allocentric target detection. Brain Stimul. 2013;6(3):433–9.

    Article  PubMed  Google Scholar 

  65. Batsikadze G, Moliadze V, Paulus W, Kuo MF, Nitsche MA. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol. 2013;591(Pt 7):1987–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Weiss M, Lavidor M. When less is more: evidence for a facilitative cathodal tDCS effect in attentional abilities. J Cogn Neurosci. 2012;24(9):1826–33.

    Article  PubMed  Google Scholar 

  67. Hasan A, Misewitsch K, Nitsche MA, Gruber O, Padberg F, Falkai P, et al. Impaired motor cortex responses in non-psychotic first-degree relatives of schizophrenia patients: a cathodal tDCS pilot study. Brain Stimul. 2013;6:821–9.

    Article  PubMed  Google Scholar 

  68. Bikson M, Datta A, Elwassif M. Establishing safety limits for transcranial direct current stimulation. Clin Neurophysiol. 2009;120(6):1033–4.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Fregni F, Thome-Souza S, Nitsche MA, Freedman SD, Valente KD, Pascual-Leone A. A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy. Epliepsia. 2006;47(2):335–42.

    Article  Google Scholar 

  70. Brunelin J, Mondino M, Gassab L, Haesebaert F, Gaha L, Suaud-Chagny M-F, et al. Examining transcranial direct-current stimulation (tDCS) as a treatment for hallucinations in schizophrenia. Am J Psychiatry. 2012;169:719–24.

    Article  PubMed  Google Scholar 

  71. Brunoni AR, Valiengo L, Baccaro A, Zanao TA, Oliveira AC, Goulart AC, et al. The sertraline versus electrical current therapy for treating depression clinical study: results from a factorial, randomized, controlled trial. JAMA Psychiatry. 2013;70:383–91.

    Article  CAS  PubMed  Google Scholar 

  72. Krause B, Cohen KR. Can transcranial electrical stimulation improve learning difficulties in atypical brain development? A future possibility for cognitive training. Dev Cogn Neurosci. 2013;6:176–94.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mattai A, Miller R, Weisinger B, Greenstein D, Bakalar J, Tossell J, et al. Tolerability of transcranial direct current stimulation in childhood-onset schizophrenia. Brain Stimul. 2011;4(4):275–80.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Schneider HD, Hopp JP. The use of the Bilingual Aphasia Test for assessment and transcranial direct current stimulation to modulate language acquisition in minimally verbal children with autism. Clin Linguist Phon. 2011;25(6–7):640–54.

    Article  PubMed  Google Scholar 

  75. Varga ET, Terney D, Atkins MD, Nikanorova M, Jeppesen DS, Uldall P, et al. Transcranial direct current stimulation in refractory continuous spikes and waves during slow sleep: a controlled study. Epilepsy Res. 2011;97(1–2):142–5.

    Article  PubMed  Google Scholar 

  76. Truong DQ, Magerowski G, Pascual-Leone A, Alonso-Alonso M, Bikson M, editors. Finite element study of skin and fat delineation in an obese subject for transcranial direct current stimulation. 34th Annual international conference of the IEEE engineering in medicine and biology society. 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marom Bikson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Truong, D.Q., Adair, D., Bikson, M. (2016). Computer-Based Models of tDCS and tACS. In: Brunoni, A., Nitsche, M., Loo, C. (eds) Transcranial Direct Current Stimulation in Neuropsychiatric Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-33967-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33967-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33965-8

  • Online ISBN: 978-3-319-33967-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics