Skip to main content

Target Engagement with Transcranial Current Stimulation

  • Chapter
  • First Online:
  • 1324 Accesses

Abstract

Transcranial electric stimulation (tES) applies a weak electric current to the scalp, which causes an electric field that changes brain activity and behavior. Despite the rapidly growing number of studies that report successful modulation of behavior in both healthy participants and patients, little is known about how tES modulates brain activity. In this chapter, we discuss what we know and what we do not know about the targeting of brain networks with tES. We provide an in-depth review of studies that use computational models, in vitro and in vivo animal models, and human participants to elucidate the mechanism of action of tES. The main emerging themes are (1) that the stimulation interacts with endogenous network dynamics, (2) functional connectivity represents an attractive and underexplored target for tES, and (3) that low-frequency cortical oscillations during sleep and anesthesia have become the flagship network target to elucidate the mechanisms of tES.

Preparation of this publication was partially supported by the National Institute of Mental Health of the National Institutes of Health under Award Numbers R01MH101547, R21MH105557, and R21MH105574 and the Swiss National Science Foundation (CL, grant P2EZP3-152214). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Terzuolo CA, Bullock TH. Measurement of imposed voltage gradient adequate to modulate neuronal firing. Proc Natl Acad Sci U S A. 1956;42(9):687–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Purpura DP, McMurtry JG. Intracellular activities and evoked potential changes during polarization of motor cortex. J Neurophysiol. 1965;28:166–85.

    CAS  PubMed  Google Scholar 

  3. Creutzfeldt OD, Fromm GH, Kapp HP. Influence of transcortical d-c currents on cortical neuronal activity. Exp Neurol. 1962;5:436–52.

    Article  CAS  PubMed  Google Scholar 

  4. Chan CY, Hounsgaard J, Nicholson C. Effects of electric fields on transmembrane potential and excitability of turtle cerebellar Purkinje cells in vitro. J Physiol. 1988;402:751–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bikson M et al. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol. 2004;557(Pt 1):175–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Deans JK, Powell AD, Jefferys JG. Sensitivity of coherent oscillations in rat hippocampus to AC electric fields. J Physiol. 2007;583(Pt 2):555–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Radman T et al. Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects. J Neurosci. 2007;27(11):3030–6.

    Article  CAS  PubMed  Google Scholar 

  8. Vossen A, Gross J, Thut G. Alpha power increase after transcranial alternating current stimulation at alpha frequency (alpha-tACS) reflects plastic changes rather than entrainment. Brain Stimul. 2015;8(3):499–508.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Thut G, Schyns PG, Gross J. Entrainment of perceptually relevant brain oscillations by non-invasive rhythmic stimulation of the human brain. Front Psychol. 2011;2:170.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sanchez-Vives MV, McCormick DA. Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci. 2000;3(10):1027–34.

    Article  CAS  PubMed  Google Scholar 

  11. Williams JH, Kauer JA. Properties of carbachol-induced oscillatory activity in rat hippocampus. J Neurophysiol. 1997;78(5):2631–40.

    CAS  PubMed  Google Scholar 

  12. Beltramo R et al. Layer-specific excitatory circuits differentially control recurrent network dynamics in the neocortex. Nat Neurosci. 2013;16(2):227–34.

    Article  CAS  PubMed  Google Scholar 

  13. Reato D et al. Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J Neurosci. 2010;30(45):15067–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Canolty RT et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science. 2006;313(5793):1626–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schmidt SL et al. Endogenous cortical oscillations constrain neuromodulation by weak electric fields. Brain Stimul. 2014;7(6):878–89.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gluckman BJ et al. Electric field suppression of epileptiform activity in hippocampal slices. J Neurophysiol. 1996;76(6):4202–5.

    CAS  PubMed  Google Scholar 

  17. Gluckman BJ et al. Adaptive electric field control of epileptic seizures. J Neurosci. 2001;21(2):590–600.

    CAS  PubMed  Google Scholar 

  18. Fröhlich F, McCormick DA. Endogenous electric fields may guide neocortical network activity. Neuron. 2010;67(1):129–43.

    Google Scholar 

  19. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(Pt 3):633–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Reato D, Bikson M, Parra LC. Lasting modulation of in vitro oscillatory activity with weak direct current stimulation. J Neurophysiol. 2015;113(5):1334–41.

    Article  PubMed  Google Scholar 

  21. Marquez-Ruiz J et al. Transcranial direct-current stimulation modulates synaptic mechanisms involved in associative learning in behaving rabbits. Proc Natl Acad Sci U S A. 2012;109(17):6710–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bindman LJ, Lippold OC, Redfearn JW. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol. 1964;172:369–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rohan JG et al. Modulating hippocampal plasticity with in vivo brain stimulation. J Neurosci. 2015;35(37):12824–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fritsch B et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron. 2010;66(2):198–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Radman T et al. Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul. 2009;2(4):215–28 e1–3.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hu H, Vervaeke K, Storm JF. Two forms of electrical resonance at theta frequencies, generated by M-current, h-current and persistent Na + current in rat hippocampal pyramidal cells. J Physiol. 2002;545(Pt 3):783–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hutcheon B, Yarom Y. Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci. 2000;23(5):216–22.

    Article  CAS  PubMed  Google Scholar 

  28. Bikson M, Rahman A, Datta A. Computational models of transcranial direct current stimulation. Clin EEG Neurosci. 2012;43(3):176–83.

    Article  PubMed  Google Scholar 

  29. Datta A et al. Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis. J Neural Eng. 2008;5(2):163–74.

    Article  PubMed  Google Scholar 

  30. Bai S, Loo C, Dokos S. A review of computational models of transcranial electrical stimulation. Crit Rev Biomed Eng. 2013;41(1):21–35.

    Article  PubMed  Google Scholar 

  31. Wagner T et al. Transcranial direct current stimulation: a computer-based human model study. Neuroimage. 2007;35(3):1113–24.

    Article  PubMed  Google Scholar 

  32. Bikson M et al. High-resolution modeling assisted design of customized and individualized transcranial direct current stimulation protocols. Neuromodulation. 2012;15(4):306–15.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Datta A et al. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2009;2(4):201–7e1.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Salvador R, et al. Modeling the electric field induced in a high resolution realistic head model during transcranial current stimulation. 2010 Annual international conference of the IEEE engineering in medicine and biology society (EMBC); 2010. p. 2073–6.

    Google Scholar 

  35. Opitz A et al. How the brain tissue shapes the electric field induced by transcranial magnetic stimulation. Neuroimage. 2011;58(3):849–59.

    Article  PubMed  Google Scholar 

  36. Thielscher A, Opitz A, Windhoff M. Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation. Neuroimage. 2011;54(1):234–43.

    Article  PubMed  Google Scholar 

  37. Minhas P et al. Transcranial direct current stimulation in pediatric brain: a computational modeling study. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:859–62.

    PubMed  PubMed Central  Google Scholar 

  38. Datta A, Bikson M, Fregni F. Transcranial direct current stimulation in patients with skull defects and skull plates: high-resolution computational FEM study of factors altering cortical current flow. Neuroimage. 2010;52(4):1268–78.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rattay F. Analysis of the electrical excitation of CNS neurons. IEEE Trans Biomed Eng. 1998;45(6):766–72.

    Article  CAS  PubMed  Google Scholar 

  40. McIntyre CC et al. Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J Neurophysiol. 2004;91(4):1457–69.

    Article  PubMed  Google Scholar 

  41. Esser SK, Hill SL, Tononi G. Modeling the effects of transcranial magnetic stimulation on cortical circuits. J Neurophysiol. 2005;94(1):622–39.

    Article  CAS  PubMed  Google Scholar 

  42. Anderson WS et al. Studies of stimulus parameters for seizure disruption using neural network simulations. Biol Cybern. 2007;97(2):173–94.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Manola L et al. Anodal vs cathodal stimulation of motor cortex: a modeling study. Clin Neurophysiol. 2007;118(2):464–74.

    Article  PubMed  Google Scholar 

  44. Birdno MJ et al. Stimulus features underlying reduced tremor suppression with temporally patterned deep brain stimulation. J Neurophysiol. 2012;107(1):364–83.

    Article  PubMed  Google Scholar 

  45. Ali MM, Sellers KK, Fröhlich F. Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. J Neurosci. 2013;33(27):11262–75.

    Google Scholar 

  46. Dutta A, Nitsche MA. Neural mass model analysis of online modulation of electroencephalogram with transcranial direct current stimulation. 2013 6th International IEEE/EMBS conference on neural engineering (NER); 2013. p. 206–10.

    Google Scholar 

  47. Molaee-Ardekani B et al. Effects of transcranial direct current stimulation (tDCS) on cortical activity: a computational modeling study. Brain Stimul. 2013;6(1):25–39.

    Article  PubMed  Google Scholar 

  48. Dutta A. Bidirectional interactions between neuronal and hemodynamic responses to transcranial direct current stimulation (tDCS): challenges for brain-state dependent tDCS. Front Syst Neurosci. 2015;9:107.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Berger H. Uber das elektrenkephalogramm des menschen. Arch Psychiatr Nervenkr. 1929;87(1):527–70.

    Article  Google Scholar 

  50. Buzsaki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents—EEG, ECoG. LFP and spikes. Nat Rev Neurosci. 2012;13(6):407–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Harris KD, Thiele A. Cortical state and attention. Nat Rev Neurosci. 2011;12(9):509–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Uhlhaas PJ, Singer W. Neuronal dynamics and neuropsychiatric disorders: toward a translational paradigm for dysfunctional large-scale networks. Neuron. 2012;75(6):963–80.

    Article  CAS  PubMed  Google Scholar 

  53. Matsumoto J et al. Modulation of mu rhythm desynchronization during motor imagery by transcranial direct current stimulation. J Neuroeng Rehabil. 2010;7:27.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kirov R et al. Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding. Proc Natl Acad Sci U S A. 2009;106(36):15460–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kanai R, Paulus W, Walsh V. Transcranial alternating current stimulation (tACS) modulates cortical excitability as assessed by TMS-induced phosphene thresholds. Clin Neurophysiol. 2010;121(9):1551–4.

    Article  PubMed  Google Scholar 

  56. Zaehle T, Rach S, Herrmann CS. Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS One. 2010;5(11), e13766.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Izhikevich EM. Simple model of spiking neurons. IEEE Trans Neural Netw. 2003;14(6):1569–72.

    Article  CAS  PubMed  Google Scholar 

  58. Izhikevich EM. Which model to use for cortical spiking neurons? IEEE Trans Neural Netw. 2004;15(5):1063–70.

    Article  PubMed  Google Scholar 

  59. Kellaway P. The part played by electric fish in the early history of bioelectricity and electrotherapy. Bull Hist Med. 1946;20(2):112–37.

    CAS  PubMed  Google Scholar 

  60. Priori A. Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin Neurophysiol. 2003;114(4):589–95.

    Article  PubMed  Google Scholar 

  61. Costain R, Redfearn JW, Lippold OCJ. Controlled trial of therapeutic effects of polarization of brain depressive-illness. Br J Psychiatry. 1964;110(469):786.

    Article  CAS  PubMed  Google Scholar 

  62. Lippold OC, Redfearn JW. Mental changes resulting from the passage of small direct currents through the human brain. Br J Psychiatry. 1964;110:768–72.

    Article  CAS  PubMed  Google Scholar 

  63. Redfearn JW, Costain R, Lippold OCJ. Preliminary account of clinical effects of polarizing brain in certain psychiatric-disorders. Br J Psychiatry. 1964;110(469):773.

    Article  CAS  PubMed  Google Scholar 

  64. Rosenthal SH, Wulfsohn NL. Electrosleep—a clinical trial. Am J Psychiatry. 1970;127(4):533–4.

    Article  CAS  PubMed  Google Scholar 

  65. Bishop GH, O'Leary JL. The effects of polarizing currents on cell potentials and their significance in the interpretation of central nervous system activity. Electroencephalogr Clin Neurophysiol. 1950;2(4):401–16.

    Article  CAS  PubMed  Google Scholar 

  66. Bindman LJ, Lippold OCJ, Redfearn JW. Action of brief polarizing currents on cerebral cortex of rat. 1. During current flow +. 2. In production of long-lecting after-effects. J Physiol Lond. 1964;172(3):369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Priori A et al. Polarization of the human motor cortex through the scalp. Neuroreport. 1998;9(10):2257–60.

    Article  CAS  PubMed  Google Scholar 

  68. Pfurtscheller G. Spectrum analysis of EEG: before, during and after extracranial stimulation in man. Elektromed Biomed Tech. 1970;15(6):225–30.

    Article  CAS  PubMed  Google Scholar 

  69. Antal A et al. Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence. Invest Ophthalmol Vis Sci. 2004;45(2):702–7.

    Article  PubMed  Google Scholar 

  70. Accornero N et al. Visual evoked potentials modulation during direct current cortical polarization. Exp Brain Res. 2007;178(2):261–6.

    Article  PubMed  Google Scholar 

  71. Dieckhofer A et al. Transcranial direct current stimulation applied over the somatosensory cortex – differential effect on low and high frequency SEPs. Clin Neurophysiol. 2006;117(10):2221–7.

    Article  PubMed  Google Scholar 

  72. Kirimoto H et al. Transcranial direct current stimulation over the motor association cortex induces plastic changes in ipsilateral primary motor and somatosensory cortices. Clin Neurophysiol. 2011;122(4):777–83.

    Article  PubMed  Google Scholar 

  73. Antal A et al. Transcranial direct current stimulation over somatosensory cortex decreases experimentally induced acute pain perception. Clin J Pain. 2008;24(1):56–63.

    Article  PubMed  Google Scholar 

  74. Csifcsak G et al. Modulatory effects of transcranial direct current stimulation on laser-evoked potentials. Pain Med. 2009;10(1):122–32.

    Article  PubMed  Google Scholar 

  75. Zaehle T et al. Excitability changes induced in the human auditory cortex by transcranial direct current stimulation: direct electrophysiological evidence. Exp Brain Res. 2011;215(2):135–40.

    Article  PubMed  Google Scholar 

  76. Antal A et al. Oscillatory brain activity and transcranial direct current stimulation in humans. Neuroreport. 2004;15(8):1307–10.

    Article  PubMed  Google Scholar 

  77. Ardolino G et al. Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain. J Physiol. 2005;568(Pt 2):653–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Faria P et al. Feasibility of focal transcranial DC polarization with simultaneous EEG recording: preliminary assessment in healthy subjects and human epilepsy. Epilepsy Behav. 2012;25(3):417–25.

    Article  PubMed  Google Scholar 

  79. Accornero N et al. EEG mean frequency changes in healthy subjects during prefrontal transcranial direct current stimulation. J Neurophysiol. 2014;112(6):1367–75.

    Article  PubMed  Google Scholar 

  80. Soekadar SR et al. In vivo assessment of human brain oscillations during application of transcranial electric currents. Nat Commun. 2013;4:2032.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Baudewig J et al. Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation. Magn Reson Med. 2001;45(2):196–201.

    Article  CAS  PubMed  Google Scholar 

  82. Saiote C et al. Combining functional magnetic resonance imaging with transcranial electrical stimulation. Front Hum Neurosci. 2013;7:435.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Nitsche MA et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol. 2003;553(Pt 1):293–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liebetanz D et al. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain. 2002;125(Pt 10):2238–47.

    Article  PubMed  Google Scholar 

  85. Dudek SM, Bear MF. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci U S A. 1992;89(10):4363–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Stagg CJ et al. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J Neurosci. 2009;29(16):5202–6.

    Article  CAS  PubMed  Google Scholar 

  87. Clark VP et al. Transcranial direct current stimulation (tDCS) produces localized and specific alterations in neurochemistry: a (1)H magnetic resonance spectroscopy study. Neurosci Lett. 2011;500(1):67–71.

    Article  CAS  PubMed  Google Scholar 

  88. Kim S et al. tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: A 7T magnetic resonance spectroscopy study. Neuroimage. 2014;99:237–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fröhlich F, Sellers KK, Cordle AL. Targeting the neurophysiology of cognitive systems with transcranial alternating current stimulation. Expert Rev Neurother. 2015;15(2):145–67.

    Google Scholar 

  90. Fröhlich F. Experiments and models of cortical oscillations as a target for noninvasive brain stimulation. Prog Brain Res. 2015;222:41–73.

    Google Scholar 

  91. Herrmann CS et al. Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front Hum Neurosci. 2013;7:279.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Antal A et al. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul. 2008;1(2):97–105.

    Article  PubMed  Google Scholar 

  93. Vosskuhl J, Huster RJ, Herrmann CS. Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation. Front Hum Neurosci. 2015;9:257.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Neuling T, Rach S, Herrmann CS. Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states. Front Hum Neurosci. 2013;7:161.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Helfrich RF et al. Selective modulation of interhemispheric functional connectivity by HD-tACS shapes perception. PLoS Biol. 2014;12(12), e1002031.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Struber D et al. Antiphasic 40 Hz oscillatory current stimulation affects bistable motion perception. Brain Topogr. 2014;27(1):158–71.

    Article  PubMed  Google Scholar 

  97. Helfrich RF et al. Entrainment of brain oscillations by transcranial alternating current stimulation. Curr Biol. 2014;24(3):333–9.

    Article  CAS  PubMed  Google Scholar 

  98. Neuling T et al. Friends, not foes: magnetoencephalography as a tool to uncover brain dynamics during transcranial alternating current stimulation. Neuroimage. 2015;118:406–13.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Busch NA, Dubois J, VanRullen R. The phase of ongoing EEG oscillations predicts visual perception. J Neurosci. 2009;29(24):7869–76.

    Article  CAS  PubMed  Google Scholar 

  100. Mathewson KE et al. To see or not to see: prestimulus alpha phase predicts visual awareness. J Neurosci. 2009;29(9):2725–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Romei V, Gross J, Thut G. On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: correlation or causation? J Neurosci. 2010;30(25):8692–7.

    Article  CAS  PubMed  Google Scholar 

  102. Pikovsky A, Rosenblum M, Kurths J. Synchronization: a universal concept in nonlinear sciences. The Cambridge nonlinear science series. Cambridge: Cambridge University Press; 2011. p. 411, xix.

    Google Scholar 

  103. Salin PA, Bullier J. Corticocortical connections in the visual system: structure and function. Physiol Rev. 1995;75(1):107–54.

    CAS  PubMed  Google Scholar 

  104. Strogatz SH. Exploring complex networks. Nature. 2001;410(6825):268–76.

    Article  CAS  PubMed  Google Scholar 

  105. Sporns O, Zwi JD. The small world of the cerebral cortex. Neuroinformatics. 2004;2(2):145–62.

    Article  PubMed  Google Scholar 

  106. Polania R, Nitsche M, Paulus W. Modulation of functional connectivity with transcranial direct current stimulation. In: Chen R, Rothwell JC, editors. Cortical connectivity: brain stimulation for assessing and modulating cortical connectivity and function. Heidelberg: Springer; 2012. p. 365, viii.

    Google Scholar 

  107. Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron. 2004;44(1):5–21.

    Article  CAS  PubMed  Google Scholar 

  108. Citri A, Malenka RC. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology. 2008;33(1):18–41.

    Article  PubMed  Google Scholar 

  109. Gross GW. Simultaneous single unit recording in vitro with a photoetched laser deinsulated gold multimicroelectrode surface. IEEE Trans Biomed Eng. 1979;26(5):273–9.

    Article  CAS  PubMed  Google Scholar 

  110. Gross GW et al. A new fixed-array multi-microelectrode system designed for long-term monitoring of extracellular single unit neuronal activity in vitro. Neurosci Lett. 1977;6(2-3):101–5.

    Article  CAS  PubMed  Google Scholar 

  111. Garofalo M et al. Evaluation of the performance of information theory-based methods and cross-correlation to estimate the functional connectivity in cortical networks. PLoS One. 2009;4(8):2715865.

    Article  CAS  Google Scholar 

  112. Ito S et al. Extending transfer entropy improves identification of effective connectivity in a spiking cortical network model. PLoS One. 2011;6(11):27431.

    Article  CAS  Google Scholar 

  113. Hamilton F et al. Real-time tracking of neuronal network structure using data assimilation. Phys Rev E Stat Nonlin Soft Matter Phys. 2013;88(5):052715.

    Article  PubMed  CAS  Google Scholar 

  114. Berry T et al. Detecting connectivity changes in neuronal networks. J Neurosci Methods. 2012;209(2):388–97.

    Article  PubMed  Google Scholar 

  115. Masud MS, Borisyuk R. Statistical technique for analysing functional connectivity of multiple spike trains. J Neurosci Methods. 2011;196(1):201–19.

    Article  PubMed  Google Scholar 

  116. Shafi MM et al. Exploration and modulation of brain network interactions with noninvasive brain stimulation in combination with neuroimaging. Eur J Neurosci. 2012;35(6):805–25.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Logothetis NK. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos Trans R Soc B Biol Sci. 2002;357(1424):1003–37.

    Article  Google Scholar 

  118. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10(3):186–98.

    Article  CAS  PubMed  Google Scholar 

  119. Bullmore ET, Bassett DS. Brain graphs: graphical models of the human brain connectome. Annu Rev Clin Psychol. 2011;7:113–40.

    Article  PubMed  Google Scholar 

  120. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8(9):700–11.

    Article  CAS  PubMed  Google Scholar 

  121. van den Heuvel MP, Hulshoff Pol HE. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol. 2010;20(8):519–34.

    Article  PubMed  CAS  Google Scholar 

  122. Deco G, Jirsa VK, McIntosh AR. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat Rev Neurosci. 2011;12(1):43–56.

    Article  CAS  PubMed  Google Scholar 

  123. Fox MD et al. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS). Neuroimage. 2012;62(4):2232–43.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Keeser D et al. Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. J Neurosci. 2011;31(43):15284–93.

    Article  CAS  PubMed  Google Scholar 

  125. Meinzer M et al. Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation. J Neurosci. 2012;32(5):1859–66.

    Article  CAS  PubMed  Google Scholar 

  126. Polania R, Paulus W, Nitsche MA. Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Hum Brain Mapp. 2012;33(10):2499–508.

    Article  PubMed  Google Scholar 

  127. Polania R et al. The importance of timing in segregated theta phase-coupling for cognitive performance. Curr Biol. 2012;2012:1314–8.

    Article  CAS  Google Scholar 

  128. Fox MD et al. Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases. Proc Natl Acad Sci U S A. 2014;111(41):E4367–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dayan E et al. Noninvasive brain stimulation: from physiology to network dynamics and back. Nat Neurosci. 2013;16(7):838–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Grefkes C et al. Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol. 2008;63(2):236–46.

    Article  PubMed  Google Scholar 

  131. Carter AR et al. Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol. 2010;67(3):365–75.

    PubMed  PubMed Central  Google Scholar 

  132. van Meer MPA et al. Recovery of sensorimotor function after experimental stroke correlates with restoration of resting-state interhemispheric functional connectivity. J Neurosci. 2010;30(11):3964–72.

    Article  PubMed  CAS  Google Scholar 

  133. Zhang D, Raichle ME. Disease and the brain's dark energy. Nat Rev Neurol. 2010;6(1):15–28.

    Article  PubMed  Google Scholar 

  134. Fox MD, Greicius M. Clinical applications of resting state functional connectivity. Front Syst Neurosci. 2010;4:19.

    PubMed  PubMed Central  Google Scholar 

  135. Greicius M. Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol. 2008;21(4):424–30.

    Article  PubMed  Google Scholar 

  136. Brittain J-S et al. Tremor suppression by rhythmic transcranial current stimulation. Curr Biol. 2013;23(5):436–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Amzica F, Steriade M. Disconnection of intracortical synaptic linkages disrupts synchronization of a slow oscillation. J Neurosci. 1995;15(6):4658–77.

    CAS  PubMed  Google Scholar 

  138. Shu Y, Hasenstaub A, McCormick DA. Turning on and off recurrent balanced cortical activity. Nature. 2003;423(6937):288–93.

    Article  CAS  PubMed  Google Scholar 

  139. Steriade M, Nunez A, Amzica F. A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci. 1993;13(8):3252–65.

    CAS  PubMed  Google Scholar 

  140. Crunelli V, Hughes SW. The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nat Neurosci. 2010;13(1):9–17.

    Article  CAS  PubMed  Google Scholar 

  141. Amzica F, Steriade M. Electrophysiological correlates of sleep delta waves. Electroencephalogr Clin Neurophysiol. 1998;107:69–83.

    Article  CAS  PubMed  Google Scholar 

  142. Contreras D, Steriade M. Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J Neurosci. 1995;15(1 Pt 2):604–22.

    CAS  PubMed  Google Scholar 

  143. Vyazovskiy VV et al. Cortical firing and sleep homeostasis. Neuron. 2009;63(6):865–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Timofeev I. Local origin of slow EEG waves during sleep. Zh Vyssh Nerv Deiat Im I P Pavlova. 2013;63(1):105–12.

    PubMed  Google Scholar 

  145. Esser SK, Hill SL, Tononi G. Sleep homeostasis and cortical synchronization: I. Modeling the effects of synaptic strength on sleep slow waves. Sleep. 2007;30(12):1617–30.

    PubMed  PubMed Central  Google Scholar 

  146. Chauvette S et al. Properties of slow oscillation during slow-wave sleep and anesthesia in cats. J Neurosci. 2011;31(42):14998–5008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Steriade M, Timofeev I, Grenier F. Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol. 2001;85(5):1969–85.

    CAS  PubMed  Google Scholar 

  148. Reato D et al. Effects of weak transcranial alternating current stimulation on brain activity-a review of known mechanisms from animal studies. Front Hum Neurosci. 2013;7:687.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Contreras D, Timofeev I, Steriade M. Mechanisms of long-lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. J Physiol. 1996;494(Pt 1):251–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Timofeev I, Contreras D, Steriade M. Synaptic responsiveness of cortical and thalamic neurones during various phases of slow sleep oscillation in cat. J Physiol. 1996;494:265–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Timofeev I, Grenier F, Steriade M. Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study. Proc Natl Acad Sci U S A. 2001;98(4):1924–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Reato D et al. Transcranial electrical stimulation accelerates human sleep homeostasis. PLoS Comput Biol. 2013;9(2), e1002898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Marshall L et al. Boosting slow oscillations during sleep potentiates memory. Nature. 2006;444(7119):610–3.

    Article  CAS  PubMed  Google Scholar 

  154. Ozen S et al. Transcranial electric stimulation entrains cortical neuronal populations in rats. J Neurosci. 2010;30(34):11476–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Rasch B, Born J. About sleep’s role in memory. Physiol Rev. 2013;93(2):681–766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Tononi G, Cirelli C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron. 2014;81(1):12–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Turrigiano G. Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb Perspect Biol. 2012;4(1):a005736.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Turrigiano GG et al. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature. 1998;391(6670):892–6.

    Article  CAS  PubMed  Google Scholar 

  159. Hill S, Tononi G, Ghilardi MF. Sleep improves the variability of motor performance. Brain Res Bull. 2008;76(6):605–11.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Nere A et al. Sleep-dependent synaptic down-selection (I): modeling the benefits of sleep on memory consolidation and integration. Front Neurol. 2013;4:143.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Binder S et al. Transcranial slow oscillation stimulation during sleep enhances memory consolidation in rats. Brain Stimul. 2014;7(4):508–15.

    Article  PubMed  Google Scholar 

  162. Binder S et al. Transcranial slow oscillation stimulation during NREM sleep enhances acquisition of the radial maze task and modulates cortical network activity in rats. Front Behav Neurosci. 2014;7:220.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Del Felice A, Magalini A, Masiero S. Slow-oscillatory transcranial direct current stimulation modulates memory in temporal lobe epilepsy by altering sleep spindle generators: a possible rehabilitation tool. Brain Stimul. 2015;8(3):567–73.

    Article  PubMed  Google Scholar 

  164. Munz MT et al. Slow oscillating transcranial direct current stimulation during non-rapid eye movement sleep improves behavioral inhibition in attention-deficit/hyperactivity disorder. Front Cell Neurosci. 2015;9:307.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Saebipour MR et al. Slow oscillating transcranial direct current stimulation during sleep has a sleep-stabilizing effect in chronic insomnia: a pilot study. J Sleep Res. 2015;24(5):518–25.

    Article  PubMed  Google Scholar 

  166. Westerberg CE et al. Memory improvement via slow-oscillatory stimulation during sleep in older adults. Neurobiol Aging. 2015;36(9):2577–86.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Sahlem GL et al. Oscillating square wave transcranial direct current stimulation (tDCS) delivered during slow wave sleep does not improve declarative memory more than sham: a randomized sham controlled crossover study. Brain Stimul. 2015;8(3):528–34.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Eggert T et al. No effects of slow oscillatory transcranial direct current stimulation (tDCS) on sleep-dependent memory consolidation in healthy elderly subjects. Brain Stimul. 2013;6(6):938–45.

    Article  PubMed  Google Scholar 

  169. Shafer A. Metaphor and anesthesia. Anesthesiology. 1995;83(6):1331–42.

    Article  CAS  PubMed  Google Scholar 

  170. Murphy M et al. Propofol anesthesia and sleep: a high-density EEG study. Sleep. 2011;34(3):283–91A.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Fröhlich Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fröhlich, F. et al. (2016). Target Engagement with Transcranial Current Stimulation. In: Brunoni, A., Nitsche, M., Loo, C. (eds) Transcranial Direct Current Stimulation in Neuropsychiatric Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-33967-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33967-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33965-8

  • Online ISBN: 978-3-319-33967-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics