Skip to main content

Land Use Competition Related to Woody Biomass Production on Arable Land in Germany

  • Chapter
  • First Online:
Book cover Land Use Competition

Part of the book series: Human-Environment Interactions ((HUEN,volume 6))

Abstract

As land is a limited resource, diverging demands drive competition between land uses. The pressure on arable land is increasing. In Germany, about 80 ha of arable land are converted daily (2009–2012), mainly to housing and transport uses. A small portion is also lost each year to reforestation and to ecological compensation measures. The boom in biomass production for energetic purposes in particular is serving to heighten the pressure on arable land and is increasingly competing for land with food and feed production. Over the last decade, the demand for woodfuel has also increased remarkably. Germany aims to cover 14 % of its heat demand with renewable energy by the year 2020, with wood to play a leading role. To meet this target, novel systems of land use will need to be added to the current land use spectrum in order to increase the wood supply. The cultivation of fast-growing trees, such as poplar and willow, represents one means to address the increasing demand while, at the same time, fostering the provision of a range of beneficial ecosystem services. Systems that mix annual crop production and fast-growing trees on the same site constitute an especially promising pathway to achieve synergies between different land use types and to reduce land use competition. This chapter explores the benefits, potentials, limitations and challenges of cropping systems using fast-growing trees in Germany. Special emphasis is placed on the capacity of agroforestry systems to mitigate land use competition by combining wood with food production and conservation on the same plot. Trade-offs and synergies with ecosystem services such as food production, aesthetic values and other regulating and supporting services are discussed at different spatial and temporal scales. Finally, some conclusions for sustainable land management are drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.destatis.de/EN/FactsFigures/EconomicSectors/AgricultureForestryFisheries/LandUse/Tables/Areas.html.

  2. 2.

    www.fnr.de/fileadmin/fnr/images/daten-undfakten/2014/Abb_108_2014_Maisanbau_tabellarisch.zip.

  3. 3.

    http://mediathek.fnr.de/media/downloadable/files/samples/a/b/abb_696.jpg.

  4. 4.

    http://bioenergie.fnr.de/bioenergie/festbrennstoffe/.

  5. 5.

    Global Land Project, 2005: Science Plan and Implementation Strategy: http://www.globallandproject.org/arquivos/report_53.pdf.

  6. 6.

    More information about the ‘Sustainable Land Management’ programme: http://nachhaltiges-landmanagement.de/en/home.

References

  • Alker, G., Bruton, C., & Richards, K. (2005). Full-scale implementation of SRC-systems. Assessment of technical and non-technical barriers. IEA Bioenergy Task 30. High Priority Area, 3, 29.

    Google Scholar 

  • Aust, C., (2012). Abschätzung der nationalen und regionalen Biomassepotentiale von Kurzumtriebsplantagen auf landwirtschaftlichen Flächen in Deutschland. Dissertation. Fakultät für Forst- und Umweltwissenschaften, Albert-Ludwigs-Universität Freiburg im Breisgau. 167 S. Online. http://www.freidok.uni-freiburg.de/volltexte/8630/pdf/Dissertation_Aust_KUP_Potentiale.pdf. Accessed 26 November 2014.

  • Bärwolff, M., Reinhold, G., Fürstenau, C., Graf, T., Jung, L. & Vetter, A. (2014). Gewässerrandstreifen als Kurzumtriebsplantagen oder Agroforstsysteme. Umweltbundesamt, Texte 94/2013. Online. http://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/texte_94_2013_gewaesserrandstreifen_als_kurzumtriebsplantagen_1.pdf. Accessed 26 November 2014.

  • Baum, S., Weih, M., Busch, G., Kroiher, F. & Bolte, A. (2009). The impact of short rotation coppice plantations on phytdiversity. vTI Agriculture and Forestry Research (Vol. 59, Issue 3, pp. 163–170). Online: http://www.ti.bund.de/media/publikationen/landbauforschung/Landbau-forschung_Vol59_3.pdf

  • Baum, S., (2012). Phytodiversity in short rotation coppice plantations. Dissertation. Georg-August-Universität Göttingen. Online: https://ediss.uni-goettingen.de/bitstream/handle/118-58/00-1735-0000-000D-F05A-1/baum.pdf?sequence=1. Accessed 26 November 2014.

  • Bemmann, A. & Große, W. (2011). Effiziente Landnutzung—ein Beitrag zur Zukunftssicherung. Vision der Professur für Forst- und Holzwirtschaft Osteuropas. In S. Bonn, J. Erler, S. Herzog (eds.), Tharandt 2011—200 Jahren Ideen für die Zukunft. Forstwissenschaftliche Beiträge Tharandt/Contributions to Forest Sciences, Beiheft 12, pp. 16–37.

    Google Scholar 

  • Bemmann, A., & Knust, C. (Eds.). (2010). Agrowood—Kurzumtriebsplantagen in Deutschland und europäische Perspektiven. Berlin: Weißensee Verlag. (340 pp).

    Google Scholar 

  • Bemmann, A., Nahm, M., Brodbeck, F., & Sauter, U. H. (2010). Holz aus Kurzumtriebsplantagen: Hemmnisse und Chancen. Forstarchiv, 81(6), 246–254.

    Google Scholar 

  • BMBF—German Federal Ministry of Education and Research (2008). Announcement. Regulations for the ‘Sustainable land management’ funding measure. Online: http://www.bmbf.de/en/furtherance/13138.php. Accessed 18 November 2014.

  • BMU—Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (2008). Leitstudie 2008. Weiterentwicklung der Ausbaustrategie Erneuerbare Energien vor dem Hintergrund der aktuellen Klimaschutzziele Deutschlands und Europas. Bonn, 196 pp.

    Google Scholar 

  • BMU/BMELV—Federal Ministry for the Environment, Nature Conservation and Nuclear Safety and Federal Ministry of Food, Agriculture and Consumer Protection (2010). National biomass action plan for Germany.

    Google Scholar 

  • BMWi—Federal Ministry for Economic Affairs and Energy, 2007/2011/2014: 1st, 2nd and 3rd National Energy and Efficiency Plan of the Federal Republic of Germany (NEEAP).

    Google Scholar 

  • BMWi—Federal Ministry for Economic Affairs and Energy (2013). Erneuerbare Energien im Jahr 2013. Erste vorläufige Daten zur Entwicklung der erneuerbaren Energien in Deutschland auf der Grundlage der Angaben der Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat). http://www.bmwi.de/BMWi/Redaktion/PDF/A/agee-stat-bericht-ee-2013,property=pdf,bereich=bmwi2012,sprache=de,rwb=true.pdf. Accessed 14 November 2014.

  • BMWi/BMU—Federal Ministry for Economic Affairs and Energy and Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (2010). Energiekonzept für eine umweltschonende, zuverlässige und bezahlbare Energieversorgung. Berlin, 36 pp.

    Google Scholar 

  • Bock, S., Hinzen, A., & Libbe, J. (2009). Nachhaltiges Flächenmanagement – in der Praxis erfolgreich kommunizieren. In S. Bock, A. Hinzen, & J. Libbe (Eds.), Nachhaltiges Flächenmanagement – in der Praxis erfolgreich kommunizieren. Berlin: Deutsches Institut für Urbanistik.

    Google Scholar 

  • Böcker, L. (2013). Kurzumtriebsplantagen auf Rekultivierungsflächen. In A. Bemmann, D. Butler Manning (eds.), Energieholzplantagen in der Landwirtschaft pp. 155–158. Agrimedia Verlag, Clenze.

    Google Scholar 

  • Boll, T., Haaren, C. V. & Rode, M. (2015). The effects of short rotation coppice on recreation and the visual landscape—Results of a survey using 3D visualisations for scenarios in different landscape types. In D. Butler Manning, A. Bemmann, M. Bredemeier, N. Lamersdorf, C. Ammer (eds.), Bioenergy from dendromass for the sustainable development of rural areas. Weinheim: Wiley-VCH Verlag (In preparation).

    Google Scholar 

  • BUND (2010). Kurzumtriebsplantagen für die Energieholzgewinnung – Chancen und Risiken. BUND Positionen 55. Bund für Umwelt und Naturschutz Deutschland. Online: http://www.bund.net/fileadmin/bundnet/publikationen/landwirtschaft/20100714_landwirtschaft_bund_position_55_KUP.pdf. Accessed 26 November 2014

  • Bungart, R., & Hüttl, R. F. (2001). Production of biomass for energy in post-mining landscapes and nutrient dynamics. Biomass and Bioenergy, 20(3), 181–187.

    Article  CAS  Google Scholar 

  • Busch, G., & Lamersdorf, N. (2010). Kurzumtriebsplantagen – Handlungsempfehlungen zur naturverträglichen Produktion von Energieholz in der Landwirtschaft. Ergebnisse aus dem Projekt Novalis. Osnabrück, Deutsche Bundesstiftung Umwelt (DBU). Online: https://www.dbu.de/OPAC/fp/Kurzumtriebsplantagen.pdf. Accessed 26 November 2014.

  • Busch, G., & Meixner, C. (2015). A spatially explicit approach to the identification of sites suitable for woody biomass systems based on site factors and field geometry—A case study for the Göttingen district. In D. Butler Manning, A. Bemmann, M. Bredemeier, N. Lamersdorf, C. Ammer (eds.), Bioenergy from dendromass for the sustainable development of rural areas. Weinheim: Wiley-VCH Verlag (In preparation).

    Google Scholar 

  • Commission of the European Communities (2007). An energy policy for Europe. Communication from the Commission to the European Council and the European Parliament. COM (2007) 1 final, Brussels.

    Google Scholar 

  • Costanza, R., Andrade, F., Antunes, P., Van Den Belt, M., Boersma, D., Boesch, D. F., et al. (1998). Principles for sustainable governance of the oceans. Science, 281(5374), 198–199.

    Article  CAS  Google Scholar 

  • Davoudi, S., Evans, N., Governa, F., & Santangelo, M. (2008). Territorial governance in the making. Approaches, Methodologies, Practices. Boletin de la A.G.E.N., 46, 33–52.

    Google Scholar 

  • Didden, M. H., & D’haeseleer, W. D. (2003). Demand side management in a competitive European market: Who should be responsible for its implementation? Energy Policy, 31, 1307–1314.

    Article  Google Scholar 

  • Dietzsch, A. (2011). Nutzung kontaminierter Böden. Abschlussbericht des Projektes ‘Anbau von Energiepflanzen für die nachhaltige, ressourcenschonende und klimaverträgliche Rohstoffabsicherung zur Erzeugung von Strom/Wärme und synthetischen Biokraftstoffen der zweiten Generation’. Schriftenreihe des LfULG, Heft 19.

    Google Scholar 

  • Dimitriou, I., Baum, C., Baum, S., Busch, G., Schulz, U., & Köhn, J., et al. (2011). Quantifying environmental effects of short rotation Coppice (SRC) on Biodiversity, Soil and Water. IEA Bioenergy, Task 43. Online: http://ieabioenergytask43.org/wp-content/uploads/2013/09/IEA_Bioenergy_-Task43_TR2011-01.pdf. Accessed 26 November 2014

  • Don, A., Osborne, B., Hastings, A., Skiba, U., Carter, M. S., Drewer, J., et al. (2011). Land-use change to bioenergy production in Europe: Implications for the greenhouse gas balance and soil carbon. GCB Bioenergy. doi:10.1111/j.1757-1707.2011.01116.x.

    Google Scholar 

  • Dupraz C., Burgess P., Gavaland A., Graves A., Herzog F., & Incoll L., et al. (2005). Synthesis of the Silvoarable Agroforestry for Europe project. INRA-UMR System Editions, Montpellier, 254 p. Online: http://www1.montpellier.inra.fr/safe/english/results/final-report/SAFE%20Final%20Synthesis%20Report.pdf

  • European Community (2006). Directive on energy end-use efficiency and energy services. 2006/32/EC.

    Google Scholar 

  • European Union (2012). Directive on energy efficiency. 2012/27/EU.

    Google Scholar 

  • Ewing, B., Goldfinger, S., Wackernagel, M., Stechbart, M., Rizk, S. M., Reed, A., & Kitzes, J. (2008). The ecological footprint atlas 2008. Oakland: Global Footprint Network.

    Google Scholar 

  • FAO. (2013). Statistical yearbook 2013. World food and agriculture. Rome: FAO.

    Google Scholar 

  • Federal Statistics Office, Germany https://www.destatis.de/EN/FactsFigures/Economic-Sectors/AgricultureForestryFisheries/LandUse/LandUse.html. Accessed 18 November 2014.

  • Finch, J. W., Karp, A., McCabe, D. P. M., Nixon, S., Riche, A. B. & Whitmore, A. P. (2009). Miscanthus, short-rotation coppice and the historic environment. English heritage. Online: http://nora.nerc.ac.uk/7566/1/EngHerit_Report_final.pdf. Accessed 26 November 2014.

  • FNR – Fachagentur für Nachwachsende Rohstoffe (2014). Anbau nachwachsender Rohstoffe in Deutschland. http://mediathek.fnr.de/media/downloadable/files/samples/r/z/rz_fnr4_0302_grafik_nawaro_anbau_de_neu.jpg. Accessed 14 November 2014.

  • FNR – Fachagentur für Nachwachsende Rohstoffe (2014). Marktanalyse Nachwachsende Rohstoffe (Market analysis of renewable energies). Online: http://fnr.de/marktanalyse/marktanalyse.pdf. Accessed 18 November 2014.

  • Friese, F., Euring, M., & Kharazipour, A. (2015). Particle boards from newly exploited wood sources as a starting point for cascade utilisation. In D. Butler Manning, A. Bemmann, M. Bredemeier, N. Lamersdorf & C. Ammer (eds.), Bioenergy from dendromass for the sustainable development of rural areas. Weinheim: Wiley-VCH Verlag (In preparation).

    Google Scholar 

  • Fry, D., & Slater, F. (2009). The biodiversity of short rotation willow coppice in the Welsh landscape. A report to the Institute of Biological, Environmental and Rural Sciences, Aberystwyth University for EU Project ‘Willows for Wales.’ Online: https://www.aber.ac.uk/en/media/departmental/ibers/research/willowforwales/Biodiversity-of-src-coppice-in-the-Welsh-Landscape.pdf. Accessed 26 November 2014.

  • Gruenewald, H., Brandt, B. K. V., Schneider, B. U., Bens, O., Kendzia, G., & Hüttl, R. F. (2007). Agroforestry systems for the production of woody biomass for energy transformation purposes. Ecological Engineering, 29(4), 319–328.

    Article  Google Scholar 

  • Grunert, M., & Wilhelm, E.-G. (2013a). Kurzumtriebsplantagen und Biodiversität. In A. Bemmann, D. Butler Manning (eds.), Energieholzplantagen in der Landwirtschaft (pp. 139–144). Clenze: Agrimedia Verlag.

    Google Scholar 

  • Grunert, M., & Wilhelm, E.-G. (2013b). Bodenschutz vor Wind- und Wassererosion mit Kurzumtriebsplantagen. In A. Bemmann, D. Butler Manning (eds.) Energieholzplantagen in der Landwirtschaft (pp. 48–52). Clenze: Agrimedia Verlag.

    Google Scholar 

  • Harrison, P. A., Berry, P. M., Simpson, G., Haslett, J. R., Blicharska, M., Bucur, M., & Turkelboom, F. (2014). Linkages between biodiversity attributes and ecosystem services: A systematic review. Ecosystem Services, 9, 191–203.

    Article  Google Scholar 

  • Hennemann-Kreikenbohm, I., Jennemann, L., Peters, W., & Wilhelm, E.-G. (2015). Nature conservation requirements of short rotation coppice management. In D. Butler Manning, A. Bemmann, M. Bredemeier, N. Lamersdorf & C. Ammer (eds.), Bioenergy from dendromass for the sustainable development of rural areas. Weinheim; Wiley-VCH Verlag (In preparation).

    Google Scholar 

  • Hetsch, S., Steierer, F., & Prins, C. (2007). Wood resources availability and demands, part 2: Future wood flows in the forest and energy sector, European Countries in 2010 and 2020. Genf: UNECE.

    Google Scholar 

  • Hubacek, K., Fraser, E., & Thapa, S. (2010). Land-use governance. In P. A. O’Hara (ed.), International encyclopedia of public policy—Governance in a global age, Vol. 4, Social, Environmental and Corporate Governance (pp. 419–428). GPERU: Perth, Online: http://pohara.homestead.com/Encyclopedia/Volume-4.pdf. Accessed 18 November 2014.

  • IEA—International Energy Agency. (2013). IEA statistics—renewable information 2013. Paris: IEA.

    Google Scholar 

  • King, K. F. S. (1989). The history of agroforestry. In P. K. R. Nair (ed.), Agroforestry systems in the tropics. Forestry Sciences (Vol. 31, pp. 3–11). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Krause, K. C., Müller, M., Militz, H., & Krause, A. (2015). Converting wood from short rotation coppice and low value beech wood into thermoplastic composites (WPC). In D. Butler Manning, A. Bemmann, M. Bredemeier, N. Lamersdorf & C. Ammer (eds.), Bioenergy from dendromass for the sustainable development of rural areas. Weinheim: Wiley-VCH Verlag (In preparation).

    Google Scholar 

  • Kröber, M., Heinrich, J., Wagner, P., & Schweinle, J. (2013). Betriebswirtschaftliche Bewertung und Vergleich der Wettbewerbsfähigkeit von Kurzumtriebsplantagen mit annuellen Kulturen. In A. Bemmann & D. Butler Manning (eds.), Energieholzplantagen in der Landwirtschaft (pp. 95–105). Clenze: Agrimedia Verlag.

    Google Scholar 

  • Liu, J., Hull, V., Batistella, M., DeFries, R., Dietz, T., Fu, F., et al. (2013). Framing sustainability in a telecoupled world. Ecology and Society, 18(2), 26.

    Article  CAS  Google Scholar 

  • Mantau, U. (2010). Is there enough wood for Europe? 19–34. In EUwood—Final report. Hamburg/Germany, June 2010, 160.

    Google Scholar 

  • Mantau, U. (2012). Holzrohstoffbilanz Deutschland, Entwicklungen und Szenarien des Holzaufkommens und der Holzverwendung 1987 bis 2015. Hamburg, 65.

    Google Scholar 

  • Marx, M., Michalk, K., Schulte, M., & Sieberth, L. (2013). Förderung von Kurzumtriebsplantagen. In A. Bemmann, D. Butler Manning (eds.), Energieholzplantagen in der Landwirtschaft (pp. 120–138). Clenze: Agrimedia Verlag.

    Google Scholar 

  • Mead, R., & Willey, R. W. (1980). The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping. Experimental Agriculture, 16, 217–228. doi:10.1017/S0014479700010978.

    Article  Google Scholar 

  • Moss, T., & Newig, J. (2010). Multi-level water governance and problems of scale. Setting the stage for a broader debate. Environmental Management, 46, 1–6. doi:10.1007/s00267-010-9531-1.

    Article  Google Scholar 

  • Moss, T. (2012). Spatial Fit, from Panacea to practice: Implementing the EU water framework directive. Ecology and Society, 17(3), 2.

    Article  Google Scholar 

  • Murach, D., Knur, L., & Schultze, M. (2008). Endbericht Dendrom – Zukunftsrohstoff Dendromasse. Systemische Analyse, Leitbilder und Szenarien für die nachhaltige energetische und stoffliche Verwendung von Dendromasse aus Wald- und Agrarholz (p. 504). Remagen-Oberwinter: Verlag Kessel.

    Google Scholar 

  • Murach, D., Hartmann, H., Murn, Y., Schultze, M., Ali, W., & Röhle, H. (2009). Standortbasierte Leistungsschätzung in Agrarholzbeständen in Brandenburg und Sachsen. In T. Reeg, A. Bemmann, W. Konold, D. Murach, & H. Spiecker (Eds.), Anbau und Nutzung von Bäumen auf landwirtschaftlichen Flächen. Weinheim: Wiley-VCH Verlag.

    Google Scholar 

  • Nair, P. K. R. (1990). The prospects for agroforestry in the tropics. World Bank technical paper, ISSN 0253-7494; no. 131.

    Google Scholar 

  • Nonaka, I., & Takeuchi, H. (1995). The knowledge-creating company: How Japanese companies create the dynamics of information. New York: Oxford University Press.

    Google Scholar 

  • Ong, C. K., Corlett, J. E., Singh, R. P., & Black, C. R. (1991). Above and below ground interactions in agroforestry systems. Forest Ecology and Management, 45, 45–57.

    Article  Google Scholar 

  • Pohl, C. (2010). From transdisciplinarity to transdisciplinary research. Journal of Engineering & Science, 1(1), 74–83.

    Google Scholar 

  • Pollard, E., Hooper, M. D., & Moore, N. W. (1974). Hedges. London: Collins.

    Google Scholar 

  • Qinkenstein, A., Jochheim, H., Schneider, B.-U., & Hüttl, R. F. (2009). Modellierung des Kohlenstofhaushalts von Pappel-Kurzumtriebsplantagen in Brandenburg. In T. Reeg, A. Bemmann, W. Konold, D. Murach, & H. Spiecker (Eds.), Anbau und Nutzung von Bäumen auf landwirtschaftlichen Flächen. Weinheim: WILEY-VCH Verlag.

    Google Scholar 

  • Reed, A., & Kitzes, J. (2008). The ecological footprint atlas 2008. Oakland: Global Footprint Network.

    Google Scholar 

  • Reeg, T. (2008). Agroforstsysteme als interessante Landnutzungsalternative? Entscheidungsfaktoren für Landnutzer. Cottbuser Schriften zur Ökosystemgenese und Landschaftsentwicklung, 6(2008), 53–68.

    Google Scholar 

  • Reeg, T., Bemmann, A., Konold, W., Murach, D., & Spiecker, H. (2009). Anbau und Nutzung von Bäumen auf landwirtschaftlichen Flächen. Weinheim: Wiley-VCH Verlag. (355 pp).

    Book  Google Scholar 

  • Reeg, T., & Grünewald, H. (2009). Überblick über den Stand der Forschung zu Agroforstsystemen in Deutschland. In T. Reeg, A. Bemmann, W. Konold, D. Murach, & H. Spiecker (Eds.), Anbau und Nutzung von Bäumen auf landwirtschaftlichen Flächen. Weinheim: WILEY-VCH Verlag.

    Chapter  Google Scholar 

  • Rist, S., Chidambaranathan, M., Escobar, C., Wiesmann, U., & Zimmermann, A. (2007). Moving from sustainable management to sustainable governance of natural resources: The role of social learning processes in rural India, Bolivia and Mali. Journal of Rural Studies, 23(1), 23–37.

    Article  Google Scholar 

  • Röhle, H., Skibbe, K., & Horn, H. (2013). Wachstum und Ertragsaussichten von Kurzumtriebsplantagen. In A. Bemmann, D. Butler Manning (eds.), Energieholzplantagen in der Landwirtschaft (pp. 35–42). Clenze: Agrimedia Verlag.

    Google Scholar 

  • Schildbach, M., Grünewald, H., Wolf, H., & Schneider, B.-U. (2009). Begründung von Kurzumtriebsplantagen: Baumartenwahl und Anlageverfahren. In T. Reeg, A. Bemmann, W. Konold, D. Murach, & H. Spiecker (Eds.), Anbau und Nutzung von Bäumen auf landwirtschaftlichen Flächen (pp. 57–72). Weinheim: Wiley-VCH Verlag.

    Chapter  Google Scholar 

  • Schmidt, P., & Glaser, T. (2009). Kurzumtriebsplantagen aus Sicht des Naturschutzes. In T. Reeg, A. Bemmann, W. Konold, D. Murach, & H. Spiecker (Eds.), Anbau und Nutzung von Bäumen auf landwirtschaftlichen Flächen (pp. 161–170). Weinheim: Wiley-VCH Verlag.

    Chapter  Google Scholar 

  • Schubert, R., Schellnhuber, H. J., Buchmann, N., Epiney, A., Grießhammer, R., & Kulessa, M., et al. (2009). Future bioenergy and sustainable land use. German Advisory Council on Global Change (WGBU). London, Sterling, Earthscan.

    Google Scholar 

  • Schulz, U., Brauner, O., & Gruß, H. (2009). Animal diversity on short-rotation coppices—A review. vTI Agriculture and Forestry Research, Vol. 59, Issue 3, pp. 171–182. Online: http://www.ti.bund.de/media/publikationen/landbauforschung/Landbauforschung_Vol59_3.pdf

  • Strbac, G. (2008). Demand side management: Benefits and challenges. Energy Policy, 36(12), 4419–4426. doi:10.1016/j.enpol.2008.09.030.

    Article  Google Scholar 

  • Thrän, D., Edel, M., & Seidenberger, T. (2009). Identifizierung strategischer Hemmnisse und Entwicklung von Lösungsansätzen zur Reduzierung der Nutzungskonkurrenzen beim weiteren Ausbau der energetischen Biomassenutzung. 1. Zwischenbericht, Leipzig. Online: http://www.fornebik.bayern.de/allgemein/a_netzwerk_news/pdf_images/100526_DBFZ_Biomassekonkurrenzen.pdf

  • Van der Werf, W., Keesman, K., Burgess, P., Graves, A., Pilbeam, D., Incoll, L. D., et al. (2007). Yield-SAFE: A parameter-sparse, process-based dynamic model for predicting resource capture, growth, and production in agroforestry systems. Ecological Engineering, 29(4), 419–433.

    Article  Google Scholar 

  • Van Noordwijk, M., & Lusiana, B. (2000). WaNuLCAS 2.0, Background on a model of water nutrient and light capture in agroforestry systems. International Centre for Research in Agroforestry (ICRAF), Bogor, Indonesia, p. 186.

    Google Scholar 

  • Vetter, A., Bärwolff, M., & Biertümpfel, A. (2009). Energieholz aus Plantagen oder Agroforstsystemen – eine vergleichende Betrachtung. Dornburg. Forum Agroforstsysteme in Jena. Online: http://www.tll.de/ainfo/pdf/afs/afs18_09.pdf

  • Wagner, P., Schweinle, J., Setzer, F., Kröber, M., & Dawid, M. (2012). DLG-Standard zur Kalkulation einer Kurzumtriebsplantage. DLG-Merkblatt 372. Frankfurt am Main, 26 pp.

    Google Scholar 

  • Weih, M., & Dimitriou, I. (eds.). (2012). SRC and the environment. BioEnergy Research, 5(3). doi:10.1007/s12155-012-9230-2

    Google Scholar 

  • Wilhite, H., Shove, E., Lutzenhiser, L., & Kempton, W. (2000). The legacy of twenty years of energy demand management: We know more about individual behaviour but next to nothing about demand. In E. Jochem, J. Sathaye, & D. Bouille (Eds.), Society, behaviour, and climate change mitigation (pp. 109–126). Netherlands: Springer.

    Google Scholar 

  • The World Bank (2006). Sustainable land management. Challenges, opportunities, and trade-offs. Washington

    Google Scholar 

  • Young, O. (2002). The institutional dimensions of environmental change. Fit, interplay, and scale. Cambridge: The MIT Press.

    Google Scholar 

  • Zscheischler, J., Rogga, S., & Weith, T. (2014). Experiences with transdisciplinary research. Systems Research and Behavioral Science, 31(6), 751–756.

    Article  Google Scholar 

  • Zscheischler, J., & Rogga, S. (2015). Transdisciplinarity in land use science—A review of concepts, empirical findings and current practices. Futures, 65, 22–48.

    Article  Google Scholar 

  • Zscheischler, J., Uckert, G., & Gaasch, N. (forthcoming) Potentials of energy wood production on arable land in Germany related to land use competition.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Zscheischler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zscheischler, J., Gaasch, N., Manning, D.B., Weith, T. (2016). Land Use Competition Related to Woody Biomass Production on Arable Land in Germany. In: Niewöhner, J., et al. Land Use Competition. Human-Environment Interactions, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-33628-2_12

Download citation

Publish with us

Policies and ethics