Skip to main content

Low Energy Ion Beam Modification of Nanostructures

  • Chapter
  • First Online:

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 61))

Abstract

Nanostructures and nanomaterials with their meso-scopic properties, which can be integrated into functional devices, will enable a variety of new applications in future. They can be grown with specific properties by plenty of physical and chemical methods, and subsequent modification using ion irradiation significantly expands the potpourri of functionality of this important material class. As the ion range becomes comparable to the size of the small structures, important effects must be considered in experimental planning: reduced incorporation of implanted species, morphological changes induced by point defects, as well as strongly enhanced dynamic annealing and sputtering.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.F. Ziegler, J.P. Biersack, U. Littmark, Stopping and Range of Ions in Solids (Pergamon, New York, 1985)

    Google Scholar 

  2. A. Mutzke, R. Schneider, W. Eckstein, R. Dohmen, SDTrimSP version 5.00. IPP Report 12/8, Max-Planck-Institut für Plasmaphysik, Garching, Germany (2011)

    Google Scholar 

  3. W. Möller, W. Eckstein, Nucl. Instr. Meth. B 2, 814 (1984)

    Article  ADS  Google Scholar 

  4. T.T. Järvi, J.A. Pakarinen, A. Kuronen, K. Nordlund, Europhys. Lett. 82, 26002 (2008). doi:10.1209/0295-5075/82/26002

    Article  ADS  Google Scholar 

  5. G. Greaves, J.A. Hinks, P. Busby, N.J. Mellors, A. Ilinov, A. Kuronen, K. Nordlund, S.E. Donnelly, Phys. Rev. Lett. 111, 65504 (2013). doi:10.1103/PhysRevLett.111.065504

    Article  ADS  Google Scholar 

  6. W. Boxleitner, G. Hobler, Nucl. Instr. Meth. B 180, 125 (2001)

    Article  ADS  Google Scholar 

  7. H.B. Kim, G. Hobler, A. Steiger, A. Lugstein, E. Bertagnolli, Nanotechnology 18, 245303 (2007)

    Article  ADS  Google Scholar 

  8. G. Hobler, S. Selberherr, IEEE Trans. Comput. Aided Des. Integr. Circuits Sys. 8, 450 (1989). doi:10.1109/43.24873

    Google Scholar 

  9. B.J. Obradovic, G. Balamurugan, G. Wang, Y. Chen, A.F. Tasch, in International Electron Devices Meeting, 1998. IEDM ‘98 Technical Digest. (1998), pp. 513–516. doi:10.1109/IEDM.1998.746410

  10. H. Stippel, S. Selberherr, in Proceedings of VPAD (1993), pp. 122–123. URL http://in4.iue.tuwien.ac.at/pdfs/vpad1993/pdfs/00724750.pdf

  11. A. Burenkov, K. Tietzel, A. Hossinger, J. Lorenz, H. Ryssel, S. Selberherr, in International Conference on Simulation of Semiconductor Processes and Devices (IEEE, 1999), pp. 55–58, 6–8 September 1999. doi:10.1109/SISPAD.1999.799258

  12. B. Yuan, F. Yu, S. Tang, Nucl. Instr. Meth. B 83, 413 (1993)

    Article  ADS  Google Scholar 

  13. F. Schiettekatte, Nucl. Instr. Meth. B 266, 1880 (2008)

    Article  ADS  Google Scholar 

  14. C. Borschel, C. Ronning, Nucl. Instr. Meth. B 269, 2133 (2011). doi:10.1016/j.nimb.2011.07.004

    Article  ADS  Google Scholar 

  15. Iradina, Download page (2013). URL http://www.iradina.de

  16. R. Collins, A. Prez-Martn, J. Domnguez-Vzquez, J. Jimnez-Rodrguez, Nucl. Instr. Meth. B 90, 433 (1994). doi:10.1016/0168-583X(94)95588-3

    Google Scholar 

  17. W. Möller, Nucl. Instr. Meth. B 322, 23 (2014). doi:10.1016/j.nimb.2013.12.027

    Article  ADS  Google Scholar 

  18. D. Kunder, E. Baer, M. Sekowski, P. Pichler, M. Rommel, Microelectr. Eng. 87, 1597 (2010)

    Article  Google Scholar 

  19. H.M. Urbassek, R.M. Bradley, M.L. Nietiadi, W. Möller, Phys. Rev. B 91, 165418 (2015). doi:10.1103/PhysRevB.91.165418

    Article  ADS  Google Scholar 

  20. S. Dhara, A. Datta, C.T. Wu, Z.H. Lan, K.H. Chen, Y.L. Wang, L.C. Chen, C.W. Hsu, H.M. Lin, C.C. Chen, Appl. Phys. Lett. 82, 451 (2003). doi:10.1063/1.1536250

    Article  ADS  Google Scholar 

  21. C. Borschel, Ion-solid interaction in semiconductor nanowires, Dissertation, University of Jena, 2012. URL http://www.db-thueringen.de/servlets/DocumentServlet?id=20026

  22. C. Borschel, M.E. Messing, M.T. Borgström, W. Paschoal, J. Wallentin, S. Kumar, K. Mergenthaler, K. Deppert, C.M. Canali, H. Pettersson, L. Samuelson, C. Ronning, Nano Lett. 11, 3935 (2011). doi:10.1021/nl2021653

    Article  ADS  Google Scholar 

  23. R.A. Brown, J.S. Williams, J. Appl. Phys. 81, 7681 (1997). doi:10.1063/1.365347

    Article  ADS  Google Scholar 

  24. Memsnet materials database (2012). URL www.memsnet.org

  25. C. Lieber, Z. Wang (eds.), Functional Nanowires, vol. 32 (2007)

    Google Scholar 

  26. C. Jagadish (ed.), Special issue on Nanowires, vol. 25 (2010)

    Google Scholar 

  27. C. Ning, Phys. Stat. Sol. B 247, 774 (2010)

    Google Scholar 

  28. R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964)

    Article  ADS  Google Scholar 

  29. C. Borchers, S. Müller, D. Stichtenoth, D. Schwen, C. Ronning, J. Phys. Chem. B 110, 1656 (2006)

    Article  Google Scholar 

  30. K.A. Dick, K. Deppert, T. Martensson, B. Mandl, L. Samuelson, W. Seifert, Nano Lett. 5, 761 (2005)

    Article  ADS  Google Scholar 

  31. J. Johansson, C.P.T. Svensson, T. Martensson, L. Samuelson, W. Seifert, J. Phys. Chem. B 109, 13567 (2005)

    Article  Google Scholar 

  32. M.V. Fernandez-Serra, C. Adessi, X. Blase, Phys. Rev. Lett. 96, 166805 (2006)

    Article  ADS  Google Scholar 

  33. P. Xie, Y. Hu, Y. Fang, J. Huang, C.M. Lieber, Proc. Natl. Acad. Sci. USA 106, 15254 (2009). doi:10.1073/pnas.0906943106

    Article  ADS  Google Scholar 

  34. D.E. Perea, E.R. Hemesath, E.J. Schwalbach, J.L. Lensch-Falk, P.W. Voorhees, J.L. Lauhon, Nature Nanotechnol. 4, 315 (2009). doi:10.1038/nnano.2009.51

    Article  ADS  Google Scholar 

  35. S.J. Whang, S. Lee, D.Z. Chi, W.F. Yang, B.J. Cho, Y.F. Liew, D.L. Kwong, Nanotechnology 18, 275302 (2007). doi:10.1088/0957-4484/18/27/275302

    Article  ADS  Google Scholar 

  36. C. Ronning, C. Borschel, S. Geburt, R. Niepelt, Mat. Sci. Eng. R. R. 70, 30 (2010). doi:10.1016/j.mser.2010.07.002

    Article  Google Scholar 

  37. C. Ronning, C. Borschel, S. Geburt, R. Niepelt, S. Müller, D. Stichtenoth, J.P. Richters, A. Dev, T. Voss, L. Chen, W. Heimbrodt, C. Gutsche, W. Prost, Phys. Stat. Sol. B 247, 2329 (2010). doi:10.1002/pssb.201046192

    Article  ADS  Google Scholar 

  38. A. Colli, A. Fasoli, C. Ronning, S. Pisana, S. Piscanec, A.C. Ferrari, Nano Lett. 8, 2188 (2008)

    Article  ADS  Google Scholar 

  39. S. Hoffmann, J. Bauer, C. Ronning, T. Stelzner, J. Michler, C. Ballif, V. Sivakov, S.H. Christiansen, Nano Lett. 9, 1341 (2009). doi:10.1021/nl802977m

    Article  ADS  Google Scholar 

  40. P.D. Kanungo, R. Kögler, K. Nguyen-Duc, N. Zakharov, P. Werner, U. Gösele, Nanotechnology 20, 165706 (2009). doi:10.1088/0957-4484/20/16/165706

    Article  ADS  Google Scholar 

  41. T. Hirate, S. Sasaki, W. Li, H. Miyashita, T. Kimpara, T. Satoh, Thin Solid Films 487, 35 (2005). doi:10.1016/j.tsf.2005.01.031

    Article  ADS  Google Scholar 

  42. B. Cheng, Y. Xiao, G. Wu, L. Zhang, Adv. Funct. Mater. 14, 913 (2004). doi:10.1002/adfm.200305097

    Article  Google Scholar 

  43. S. Geburt, D. Stichtenoth, S. Müller, W. Dewald, C. Ronning, J. Wang, Y. Jiao, Y.Y. Rao, S.K. Hark, Q. Li, J. Nanosci. Nanotechnol. 8, 244 (2008). doi:10.1166/jnn.2008.N05

    Article  Google Scholar 

  44. C. Ronning, P.X. Gao, Y. Ding, Z.L. Wang, D. Schwen, Appl. Phys. Lett. 84, 783 (2004). doi:10.1063/1.1645319

    Article  ADS  Google Scholar 

  45. G. Dieke, Spectra and Energy levels of Rare Earth Ions in Crystals (Interscience Publishers, New York, 1968)

    Google Scholar 

  46. C. Cascales, M.D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, V. Petrov, Phys. Rev. B 74, 174114 (2006). doi:10.1103/PhysRevB.74.174114

    Article  ADS  Google Scholar 

  47. S. Bachir, J. Ronfard-Haret, K. Azuma, D. Kouyat, J. Kossanyi, Chem. Phys. Lett. 213, 54 (1993). doi:10.1016/0009-2614(93)85417-M

    Article  ADS  Google Scholar 

  48. H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, Y. Iye, Appl. Phys. Lett. 69, 363 (1996). doi:10.1063/1.118061

    Article  ADS  Google Scholar 

  49. W. Ren, A. Kuronen, K. Nordlund, Phys. Rev. B 86, 104114 (2012). doi:10.1103/PhysRevB.86.104114

    Article  ADS  Google Scholar 

  50. C. Borschel, R. Niepelt, S. Geburt, C. Gutsche, I. Regolin, W. Prost, F.J. Tegude, D. Stichtenoth, D. Schwen, C. Ronning, Small 5, 2576 (2009). doi:10.1002/smll.200900562

    Article  Google Scholar 

  51. C. Borschel, S. Spindler, D. Lerose, A. Bochmann, S.H. Christiansen, S. Nietzsche, M. Oertel, C. Ronning, Nanotechnology 22, 185307 (2011). doi:10.1088/0957-4484/22/18/185307

    Article  ADS  Google Scholar 

  52. L. Romano, N.G. Rudawski, M.R. Holzworth, K.S. Jones, S.G. Choi, S.T. Picraux, J. Appl. Phys. 106, 114316 (2009). doi:10.1063/1.3267154

    Article  ADS  Google Scholar 

  53. K. Jun, J. Joo, J.M. Jacobson, J. Vac. Sci. Tech. B 27, 3043 (2009). doi:10.1116/1.3259919

    Article  Google Scholar 

  54. D. Stichtenoth, Dimensionseffekte in Halbleiternanodrähten, Dissertation, University of Göttingen, 2008. URL http://webdoc.sub.gwdg.de/diss/2008/stichtenoth/

  55. O. Dmitrieva, B. Rellinghaus, J. Kästner, M.O. Liedke, J. Fassbender, J. Appl. Phys. 97, 10N112 (2005). doi:10.1063/1.1853211

    Article  Google Scholar 

  56. A. Klimmer, P. Ziemann, J. Biskupek, U. Kaiser, M. Flesch, Phys. Rev. B 79, 155427 (2009). doi:10.1103/PhysRevB.79.155427

    Article  ADS  Google Scholar 

  57. H. Holland-Moritz, S. Scheeler, C. Stanglmair, C. Pacholski, C. Ronning, Nanotechnology 26, 325301 (2015). doi:10.1088/0957-4484/26/32/325301

    Article  Google Scholar 

  58. W. Möller, K.H. Heinig, Collisional transport in ion-irradiated nanowires. Personal communication (2015)

    Google Scholar 

  59. A. Johannes, High-fluence ion beam irradiation of semiconductor nanowires, Dissertation, University of Jena, 2015

    Google Scholar 

  60. A. Johannes, S. Noack, W. Paschoal, S. Kumar, D. Jacobsson, H. Pettersson, L. Samuelson, K.A. Dick, G. Martinez-Criado, M. Burghammer, C. Ronning, J. Phys. D Appl. Phys. 47, 394003 (2014). doi:10.1088/0022-3727/47/39/394003

    Article  Google Scholar 

  61. A. Johannes, S. Noack, W. Paschoal, S. Kumar, D. Jacobsson, H. Pettersson, L. Samuelson, K.A. Dick, G. Martinez-Criado, M. Burghammer, C. Ronning, J. Phys. D Appl. Phys. 48, 079501 (2015). doi:10.1088/0022-3727/48/7/079501

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Raphael Niepelt and Dr. Sebastian Geburt for planning, performing and evaluating many of the nanowire implantation experiments presented here. Furthermore, we thank Prof. Dr. Wolfhard Möller for valuable discussion about the simulation codes and Dr.Maria Messing for recording some of the TEM images. We acknowledge financial support for the nanowire implantation experiments by the DFG under grants Ro1198/7-3 and FOR1616.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Ronning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Borschel, C., Ronning, C. (2016). Low Energy Ion Beam Modification of Nanostructures. In: Wesch, W., Wendler, E. (eds) Ion Beam Modification of Solids. Springer Series in Surface Sciences, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-319-33561-2_12

Download citation

Publish with us

Policies and ethics