Skip to main content

Calling in the Dark: The Role of Volatiles for Communication in the Rhizosphere

  • Chapter
  • First Online:
Deciphering Chemical Language of Plant Communication

Abstract

Volatile organic compounds play an important role in the communication between plants and other organisms. The rhizosphere contains a large and diverse microbial community whose members use similar volatiles for intra- and interspecific communication. However, the analysis of volatiles produced in the rhizosphere and their ecological functions have been little explored so far. In this chapter, we outline what is known about the classes of volatiles that are emitted into the rhizosphere by roots and soil microbes, and the effect they have on different interactors in the soil. Additionally, we review current approaches to sample volatiles in mesocosms and field soils. We conclude that to better understand the production and functions of volatiles in the rhizosphere, it is of critical importance to design set-ups that account for the natural complexity of soils. This will help to apply this knowledge for sustainable agriculture and the identification of novel agrochemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    EPA compendium TO-17 (version 1999), see http://www.epa.gov/ttnamti1/files/ambient/airtox/to-17r.pdf.

  2. 2.

    ISO 16017–1:2000, see http://www.iso.org/iso/catalogue_detail.htm?csnumber=29194; for ISO 16017–2:2003, see http://www.iso.org/iso/catalogue_detail.htm?csnumber=29195.

References

  • Agerbirk N, Olsen CE (2012) Glucosinolate structures in evolution. Phytochemistry 77:16–45. doi:10.1016/j.phytochem.2012.02.005

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Viljoen AM, Chenia HY (2015) The impact of plant volatiles on bacterial quorum sensing. Lett Appl Microbiol 60:8–19. doi:10.1111/lam.12343

    Article  CAS  PubMed  Google Scholar 

  • Ali JG, Alborn HT, Stelinski LL (2010) Subterranean herbivore-induced volatiles released by Citrus roots upon feeding by Diaprepes abbreviatus recruit entomopathogenic nematodes. J Chem Ecol 36:361–368. doi:10.1007/s10886-010-9773-7

    Article  CAS  PubMed  Google Scholar 

  • Ali JG, Alborn HT, Stelinski LL (2011) Constitutive and induced subterranean plant volatiles attract both entomopathogenic and plant parasitic nematodes. J Ecol 99:26–35. doi:10.1111/j.1365-2745.2010.01758.x

    Article  CAS  Google Scholar 

  • Ali JG, Alborn HT, Campos-Herrera R, Kaplan F, Duncan LW, Rodriguez-Saona C, Koppenhoefer AM, Stelinski LL (2012) Subterranean, herbivore-induced plant volatile increases biological control activity of multiple beneficial nematode species in distinct habitats. PLoS One 7. doi:10.1371/journal.pone.0038146

    Google Scholar 

  • Ali JG, Campos-Herrera R, Alborn HT, Duncan LW, Stelinski LL (2013) Sending mixed messages: a trophic cascade produced by a belowground herbivore-induced cue. J Chem Ecol 39:1140–1147. doi:10.1007/s10886-013-0332-x

    Article  CAS  PubMed  Google Scholar 

  • Allmann S, Halitschke R, Schuurink RC, Baldwin IT (2010) Oxylipin channelling in Nicotiana attenuata: lipoxygenase 2 supplies substrates for green leaf volatile production. Plant Cell Environ 33:2028–2040. doi:10.1111/j.1365-3040.2010.02203.x

    Article  CAS  PubMed  Google Scholar 

  • Attieh J, Kleppinger-Sparace KF, Nunes C, Sparace SA, Saini HS (2000) Evidence implicating a novel thiol methyltransferase in the detoxification of glucosinolate hydrolysis products in Brassica oleracea L. Plant Cell Environ 23:165–174

    Article  CAS  Google Scholar 

  • Audrain B, Farag MA, Ryu C-M, Ghigo J-M (2015) Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol Rev 39:222–233. doi:10.1093/femsre/fuu013

    Article  PubMed  Google Scholar 

  • Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotechnol 20:642–650. doi:10.1016/j.copbio.2009.09.014

    Article  CAS  PubMed  Google Scholar 

  • Bailly A, Groenhagen U, Schulz S, Geisler M, Eberl L, Weisskopf L (2014) The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling. Plant J 80:758–771. doi:10.1111/tpj.12666

    Article  CAS  PubMed  Google Scholar 

  • Bakker PAHM, Berendsen RL, Doornbos RF, Wintermans PCA, Pieterse CMJ (2013) The rhizosphere revisited: root microbiomics. Front Plant Sci 4:7. doi:10.3389/fpls.2013.00165

    Article  Google Scholar 

  • Barnett K, Johnson SN (2013) Living in the soil matrix: abiotic factors affecting root herbivores. Adv Insect Physiol 45:1–52. doi:10.1016/b978-0-12-417165-7.00001-5

    Article  Google Scholar 

  • Barto EK, Hilker M, Muller F, Mohney BK, Weidenhamer JD, Rillig MC (2011) The fungal fast lane: common mycorrhizal networks extend bioactive zones of allelochemicals in soils. PLoS One 6:7. doi:10.1371/journal.pone.0027195

    Article  CAS  Google Scholar 

  • Belhassen E, Filippi JJ, Brevard H, Joulain D, Baldovini N (2015) Volatile constituents of vetiver: a review. Flavour Fragance J 30:26–82. doi:10.1002/ffj.3227

    Article  CAS  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486. doi:10.1016/j.tplants.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  • Biedrzycki ML, Bais HP (2010) Kin recognition in plants: a mysterious behaviour unsolved. J Exp Bot 61:4123–4128. doi:10.1093/jxb/erq250

    Article  CAS  PubMed  Google Scholar 

  • Blom D, Fabbri C, Connor EC, Schiestl FP, Klauser DR, Boller T, Eberl L, Weisskopf L (2011a) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13:3047–3058. doi:10.1111/j.1462-2920.2011.02582.x

    Article  CAS  PubMed  Google Scholar 

  • Blom D, Fabbri C, Eberl L, Weisskopf L (2011b) Volatile-mediated killing of Arabidopsis thaliana by bacteria is mainly due to hydrogen cyanide. Appl Environ Microbiol 77:1000–1008. doi:10.1128/aem.01968-10

    Article  CAS  PubMed  Google Scholar 

  • Blossey B, Hunt-Joshi TR (2003) Belowground herbivory by insects: influence on plants and aboveground herbivores. Annu Rev Entomol 48:521–547

    Article  CAS  PubMed  Google Scholar 

  • Bones AM, Rossiter JT (2006) The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry 67:1053–1067

    Article  CAS  PubMed  Google Scholar 

  • Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383. doi:10.1146/annurev.micro.091208.073504

    Article  CAS  PubMed  Google Scholar 

  • Bonkowski M, Villenave C, Griffiths B (2009) Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321:213–233. doi:10.1007/s11104-009-0013-2

    Article  CAS  Google Scholar 

  • Brown PD, Morra MJ (1997) Control of soil-borne plant pests using glucosinolate-containing plants. Adv Agron 61:167–231

    Article  CAS  Google Scholar 

  • Buee M, De Boer W, Martin F, van Overbeek L, Jurkevitch E (2009) The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321:189–212. doi:10.1007/s11104-009-9991-3

    Article  CAS  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95. doi:10.1038/nature11336

    Article  CAS  PubMed  Google Scholar 

  • Caboni P, Sarais G, Aissani N, Tocco G, Sasanelli N, Liori B, Carta A, Angioni A (2012) Nematicidal activity of 2-thiophenecarboxaldehyde and methylisothiocyanate from Caper (Capparis spinosa) against Meloidogyne incognita. J Agric Food Chem 60:7345–7351. doi:10.1021/jf302075w

    Article  CAS  PubMed  Google Scholar 

  • Cane DE, Ikeda H (2012) Exploration and mining of the bacterial terpenome. Acc Chem Res 45:463–472. doi:10.1021/ar200198d

    Article  CAS  PubMed  Google Scholar 

  • Cankar K, Kraigher H, Ravnikar M, Rupnik M (2005) Bacterial endophytes from seeds of Norway spruce (Picea abies L. Karst). FEMS Microbiol Lett 244:341–345. doi:10.1016/j.femsle.2005.02.008

    Article  CAS  PubMed  Google Scholar 

  • Cardoso C, Ruyter-Spira C, Bouwmeester HJ (2011) Strigolactones and root infestation by plant-parasitic Striga, Orobanche and Phelipanche spp. Plant Sci 180:414–420. doi:10.1016/j.plantsci.2010.11.007

    Article  CAS  PubMed  Google Scholar 

  • Cecchini C, Coman MM, Cresci A, Tirillini B, Cristalli G, Papa F, Sagratini G, Vittori S, Maggi F (2010) Essential oil from fruits and roots of Ferulago campestris (Besser) Grecescu (Apiaceae): composition and antioxidant and anti-Candida activity. Flavour Fragance J 25:493–502. doi:10.1002/ffj.2010

    Article  CAS  Google Scholar 

  • Chen F, Ro DK, Petri J, Gershenzon J, Bohlmann J, Pichersky E, Tholl D (2004) Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole. Plant Physiol 135:1956–1966. doi:10.1104/pp.104.044388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chernin L, Toklikishvili N, Ovadis M, Kim S, Ben-Ari J, Khmel I, Vainstein A (2011) Quorum-sensing quenching by rhizobacterial volatiles. Environ Microbiol Rep 3:698–704. doi:10.1111/j.1758-2229.2011.00284.x

    Article  CAS  PubMed  Google Scholar 

  • Chin H-W, Lindsay RC (1994) Mechanisms of formation of volatile sulfur compounds following the action of cysteine sulfoxide lyases. J Agric Food Chem 42:1529–1536. doi:10.1021/jf00043a026

    Article  CAS  Google Scholar 

  • Chou WKW, Ikeda H, Cane DE (2011) Cloning and characterization of Pfl_1841, a 2-methylenebornane synthase in Pseudomonas fluorescens PfO-1. Tetrahedron 67:6627–6632. doi:10.1016/j.tet.2011.05.084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collado IG, Sanchez AJ, Hanson JR (2007) Fungal terpene metabolites: biosynthetic relationships and the control of the phytopathogenic fungus Botrytis cinerea. Nat Prod Rep 24:674–686. doi:10.1039/b603085h

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, Barka EA (2005) Endophytic colonization of Vitis vinifera L. by plant growth promoting bacterium Burkholderia sp strain PsJN. Appl Environ Microbiol 71:1685–1693. doi:10.1128/aem.71.4.1685-1693.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crespo E, Hordijk CA, de Graaf RM, Samudrala D, Cristescu SM, Harren FJM, van Dam NM (2012) On-line detection of root-induced volatiles in Brassica nigra plants infested with Delia radicum L. root fly larvae. Phytochemistry 84:68–77. doi:10.1016/j.phytochem.2012.08.013

    Article  CAS  PubMed  Google Scholar 

  • Croes AF, Vandenberg AJR, Bosveld M, Breteler H, Wullems GJ (1989) Thiophene accumulation in relation to morphology in roots of Tagetes patula—effects of auxin and transformation by Agrobacterium. Planta 179:43–50. doi:10.1007/bf00395769

    Article  CAS  PubMed  Google Scholar 

  • Danner H, Samudrala D, Cristescu SM, Van Dam NM (2012) Tracing hidden herbivores: time-resolved non-invasive analysis of belowground volatiles by proton-transfer-reaction mass spectrometry (PTR-MS). J Chem Ecol 38:785–794. doi:10.1007/s10886-012-0129-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danner H, Brown P, Cator E, Harren FM, van Dam N, Cristescu S (2015) Aboveground and belowground herbivores synergistically induce volatile organic sulfur compound emissions from shoots but not from roots. J Chem Ecol 41:631–640. doi:10.1007/s10886-015-0601-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawood T, Rieu I, Wolters-Arts M, Derksen EB, Mariani C, Visser EJW (2014) Rapid flooding-induced adventitious root development from preformed primordia in Solanum dulcamara. AoB Plants 6:13. doi:10.1093/aobpla/plt058

    Article  CAS  Google Scholar 

  • De Boer JG, Posthumus MA, Dicke M (2004) Identification of volatiles that are used in discrimination between plants infested with prey or nonprey herbivores by a predatory mite. J Chem Ecol 30:2215–2230

    Article  PubMed  Google Scholar 

  • de Boer W, Kowalchuk GA, van Veen JA (2006) ‘Root-food’ and the rhizosphere microbial community composition. New Phytol 170:3–6. doi:10.1111/j.1469-8137.2006.01674.x

    Article  PubMed  Google Scholar 

  • de Deyn GB, Raaijmakers CE, Zoomer HR, Berg MP, De Ruiter PC, Verhoeff HA, Bezemer TM, Van der Putten WH (2003) Soil invertebrate fauna enhances grassland succession and diversity. Nature 422:711–713

    Article  PubMed  CAS  Google Scholar 

  • De Vos M, Van Oosten VR, Van Poecke RMP, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Metraux JP, Van Loon LC, Dicke M, Pieterse CMJ (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact 18:923–937

    Article  PubMed  CAS  Google Scholar 

  • Degenhardt J, Hiltpold I, Kollner TG, Frey M, Gierl A, Gershenzon J, Hibbard BE, Ellersieck MR, Turlings TCJ (2009) Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. Proc Natl Acad Sci USA 106:13213–13218. doi:10.1073/pnas.0906365106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Giudice L, Massardo DR, Pontieri P, Bertea CM, Mombello D, Carata E, Tredici SM, Tala A, Mucciarelli M, Groudeva VI, De Stefano M, Vigliotta G, Maffei ME, Alifano P (2008) The microbial community of Vetiver root and its involvement into essential oil biogenesis. Environ Microbiol 10:2824–2841. doi:10.1111/j.1462-2920.2008.01703.x

    Article  PubMed  CAS  Google Scholar 

  • Depuydt S (2014) Arguments for and against self and non-self root recognition in plants. Front Plant Sci 5:7. doi:10.3389/fpls.2014.00614

    Article  Google Scholar 

  • Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci 15:167–175. doi:10.1016/j.tplants.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  • Dicke M, Sabelis MW (1988) Infochemical terminology: based on cost–benefit analysis rather than origin of compounds? Funct Ecol 2:131–139

    Article  Google Scholar 

  • Dickschat JS, Pahirulzaman KA, Rabe P, Klapschinski TA (2014) An improved technique for the rapid chemical characterisation of bacterial terpene cyclases. Chembiochem 15:810–814. doi:10.1002/cbic.201300763

    Article  CAS  PubMed  Google Scholar 

  • Döring TF (2014) How aphids find their host plants, and how they don’t. Ann Appl Biol 165:3–26. doi:10.1111/aab.12142

    Article  Google Scholar 

  • Driouich A, Follet-Gueye ML, Vicre-Gibouin M, Hawes M (2013) Root border cells and secretions as critical elements in plant host defense. Curr Opin Plant Biol 16:489–495. doi:10.1016/j.pbi.2013.06.010

    Article  CAS  PubMed  Google Scholar 

  • Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebel R (2010) Terpenes from marine-derived fungi. Mar Drugs 8:2340–2368. doi:10.3390/md8082340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Effmert U, Kalderas J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703. doi:10.1007/s10886-012-0135-5

    Article  CAS  PubMed  Google Scholar 

  • Eilers EJ, Pauls G, Rillig MC, Hansson BS, Hilker M, Reinecke A (2015) Novel set-up for low-disturbance sampling of volatile and non-volatile compounds from plant roots. J Chem Ecol. doi:10.1007/s10886-015-0559-9

    PubMed  PubMed Central  Google Scholar 

  • Erb M, Huber M, Robert CAM, Ferrieri AP, Machado RAR, Arce CCM (2013) The role of plant primary and secondary metabolites in root-herbivore behaviour, nutrition and physiology. In: Johnson SN, Hiltpold I, Turlings TCJ (eds) Behaviour and physiology of root herbivores, vol 45, 1st edn. Academic Press, Oxford, pp 53–95

    Chapter  Google Scholar 

  • Fantaye CA, Kopke D, Gershenzon J, Degenhardt J (2015) Restoring (E)-beta-caryophyllene production in a non-producing Maize line compromises its resistance against the fungus Colletotrichum graminicola. J Chem Ecol 41:213–223. doi:10.1007/s10886-015-0556-z

    Article  CAS  PubMed  Google Scholar 

  • Ferry A, Dugravot S, Delattre T, Christides JP, Auger J, Bagneres AG, Poinsot D, Cortesero AM (2007) Identification of a widespread monomolecular odor differentially attractive to several Delia radicum ground-dwelling predators in the field. J Chem Ecol 33:2064–2077. doi:10.1007/s10886-007-9373-3

    Article  CAS  PubMed  Google Scholar 

  • Fukami H, Asakura T, Hirano H, Abe K, Shimomura K, Yamakawa T (2002) Salicylic acid carboxyl methyltransferase induced in hairy root cultures of Atropa belladonna after treatment with exogeneously added salicylic acid. Plant Cell Physiol 43:1054–1058. doi:10.1093/pcp/pcf119

    Article  CAS  PubMed  Google Scholar 

  • Garbeva P, Hol WHG, Termorshuizen AJ, Kowalchuk GA, de Boer W (2011) Fungistasis and general soil biostasis—a new synthesis. Soil Biol Biochem 43:469–477. doi:10.1016/j.soilbio.2010.11.020

    Article  CAS  Google Scholar 

  • Garbeva P, Hordijk C, Gerards S, de Boer W (2014a) Volatile-mediated interactions between phylogenetically different soil bacteria. Front Microbiol 5:9. doi:10.3389/fmicb.2014.00289

    Article  Google Scholar 

  • Garbeva P, Hordijk C, Gerards S, de Boer W (2014b) Volatiles produced by the mycophagous soil bacterium Collimonas. FEMS Microbiol Ecol 87:639–649. doi:10.1111/1574-6941.12252

    Article  CAS  PubMed  Google Scholar 

  • Gepstein S, Kieber J (2010) Ethylene: the gaseous hormone. In: Taiz L, Zeiger E (eds) Plant physiology, 5th edn. Sinauer Associates, Sunderland, MA, pp 649–672

    Google Scholar 

  • Gfeller A, Laloux M, Barsics F, Kati DE, Haubruge E, du Jardin P, Verheggen FJ, Lognay G, Wathelet JP, Fauconnier ML (2013) Characterization of volatile organic compounds emitted by barley (Hordeum vulgare L.) roots and their attractiveness to wireworms. J Chem Ecol 39:1129–1139. doi:10.1007/s10886-013-0302-3

    Article  CAS  PubMed  Google Scholar 

  • Ghashghaie J, Badeck FW (2014) Opposite carbon isotope discrimination during dark respiration in leaves versus roots—a review. New Phytol 201:751–769. doi:10.1111/nph.12563

    Article  CAS  PubMed  Google Scholar 

  • Graner G, Persson P, Meijer J, Alstrom S (2003) A study on microbial diversity in different cultivars of Brassica napus in relation to its wilt pathogen, Verticillium longisporum. FEMS Microbiol Lett 224:269–276. doi:10.1016/s0378-1097(03)00449-x

    Article  CAS  PubMed  Google Scholar 

  • Grebner W, Stingl NE, Oenel A, Mueller MJ, Berger S (2013) Lipoxygenase6-dependent oxylipin synthesis in roots is required for abiotic and biotic stress resistance of Arabidopsis. Plant Physiol 161:2159–2170. doi:10.1104/pp.113.214544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groenhagen U, Maczka M, Dickschat JS, Schulz S (2014) Streptopyridines, volatile pyridine alkaloids produced by Streptomyces sp. FORM5. Beilstein J Org Chem 10:1421–1432. doi:10.3762/bjoc.10.146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutensohn M, Nagegowda DA, Dudareva N (2013) Involvement of compartimentalisation in monoterpene and sesquipterpene biosynthesis in plants. In: Bach TJ, Rohmer M (eds) Isoprenoid synthesis in plants and microorganisms. New concepts and experimental approaches. Springer, New York, NY, pp 155–169

    Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Ann Rev Plant Biol 57:303–333

    Article  CAS  Google Scholar 

  • Harper M (2000) Sorbent trapping of volatile organic compounds from air. J Chromatogr A 885:129–151. doi:10.1016/s0021-9673(00)00363-0

    Article  CAS  PubMed  Google Scholar 

  • Harrison SP, Morfopoulos C, Dani KGS, Prentice IC, Arneth A, Atwell BJ, Barkley MP, Leishman MR, Loreto F, Medlyn BE, Niinemets U, Possell M, Penuelas J, Wright IJ (2013) Volatile isoprenoid emissions from plastid to planet. New Phytol 197:49–57. doi:10.1111/nph.12021

    Article  CAS  PubMed  Google Scholar 

  • Hazelwood LA, Daran JM, van Maris AJ, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–2266. doi:10.1128/aem.02625-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heil M (2014) Herbivore-induced plant volatiles: targets, perception and unanswered questions. New Phytol 204:297–306. doi:10.1111/nph.12977

    Article  CAS  Google Scholar 

  • Heil M, Land WG (2014) Danger signals—damaged-self recognition across the tree of life. Front Plant Sci 5:16. doi:10.3389/fpls.2014.00578

    Article  Google Scholar 

  • Hiltpold I, Turlings TCJ (2008) Belowground chemical signaling in maize: when simplicity rhymes with efficiency. J Chem Ecol 34:628–635. doi:10.1007/s10886-008-9467-6

    Article  CAS  PubMed  Google Scholar 

  • Hol WHG, Garbeva P, Hordijk C, Hundscheid MPJ, Gunnewiek PJAK, van Agtmaal M, Kuramae EE, de Boer W (2015) Non-random species loss in bacterial communities reduces antifungal volatile production. Ecology 96:2042–2048. doi:10.1890/14-2359.1

    Article  PubMed  Google Scholar 

  • Hopkins RJ, van Dam NM, van Loon JJA (2009) Role of glucosinolates in insect–plant relationships and multitrophic interactions. Annu Rev Entomol 54:57–83. doi:10.1146/annurev.ento.54.110807.090623

    Article  CAS  PubMed  Google Scholar 

  • Hora TS, Baker R (1970) Volatile factors in soil fungistasis. Nature 225:1071–1072. doi:10.1038/2251071a0

    Article  CAS  PubMed  Google Scholar 

  • Hora TS, Baker R (1972) Influence of volatile inhibitor from soil on seed germination. Phytopathol 62:765–765

    Article  Google Scholar 

  • Huang CJ, Tsay JF, Chang SY, Yang HP, Wu WS, Chen CY (2012) Dimethyl disulfide is an induced systemic resistance elicitor produced by Bacillus cereus C1L. Pest Manag Sci 68:1306–1310. doi:10.1002/ps.3301

    Article  CAS  PubMed  Google Scholar 

  • Hung R, Lee S, Bennett JW (2013) Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecol 6:19–26. doi:10.1016/j.funeco.2012.09.005

    Article  Google Scholar 

  • Inderjit, Wardle DA, Karban R, Callaway RM (2011) The ecosystem and evolutionary contexts of allelopathy. Trends Ecol Evol 26:655–662. doi:10.1016/j.tree.2011.08.003

    Article  CAS  PubMed  Google Scholar 

  • Jacobs JJMR, Engelberts A, Croes AF, Wullems GJ (1994) Thiophene synthesis and distribution in young developing plants of Tagetes patula and Tagetes erecta. J Exp Bot 45:1459–1466. doi:10.1093/jxb/45.10.1459

    Article  CAS  Google Scholar 

  • Jallow MFA, Dugassa-Gobena D, Vidal S (2008) Influence of an endophytic fungus on host plant selection by a polyphagous moth via volatile spectrum changes. Arthropod Plant Interact 2:53–62. doi:10.1007/s11829-008-9033-8

    Article  Google Scholar 

  • Jassbi AR, Zamanizadehnajari S, Baldwin IT (2010) Phytotoxic volatiles in the roots and shoots of Artemisia tridentata as detected by headspace solid-phase microextraction and gas chromatographic-mass spectrometry analysis. J Chem Ecol 36:1398–1407. doi:10.1007/s10886-010-9885-0

    Article  CAS  PubMed  Google Scholar 

  • Jenni S, Leibundgut M, Boehringer D, Frick C, Mikolasek B, Ban N (2007) Structure of fungal fatty acid synthase and implications for iterative substrate shuttling. Science 316:254–261. doi:10.1126/science.1138248

    Article  CAS  PubMed  Google Scholar 

  • Johnson SN, Nielsen UN (2012) Foraging in the dark—chemically mediated host plant location by belowground insect herbivores. J Chem Ecol 38:604–614. doi:10.1007/s10886-012-0106-x

    Article  CAS  PubMed  Google Scholar 

  • Johnson SN, Rasmann S (2015) Root-feeding insects and their interactions with organisms in the rhizosphere. Annu Rev Entomol 60:517–535. doi:10.1146/annurev-ento-010814-020608

    Article  CAS  PubMed  Google Scholar 

  • Johnston-Monje D, Raizada MN (2011) Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and coology. PLoS One 6. doi:10.1371/journal.pone.0020396

    Google Scholar 

  • Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch Microbiol 187:351–360. doi:10.1007/s00203-006-0199-0

    Article  CAS  PubMed  Google Scholar 

  • Kai M, Vespermann A, Piechulla B (2008) The growth of fungi and Arabidopsis thaliana is influenced by bacterial volatiles. Plant Signal Behav 3:482–484

    Article  PubMed  PubMed Central  Google Scholar 

  • Kai M, Crespo E, Cristescu SM, Harren FJM, Francke W, Piechulla B (2010) Serratia odorifera: analysis of volatile emission and biological impact of volatile compounds on Arabidopsis thaliana. Appl Microbiol Biotechnol 88:965–976. doi:10.1007/s00253-010-2810-1

    Article  CAS  PubMed  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. University of Chicago Press, Chicago, IL

    Book  Google Scholar 

  • Karban R, Wetzel WC, Shiojiri K, Ishizaki S, Ramirez SR, Blande JD (2014a) Deciphering the language of plant communication: volatile chemotypes of sagebrush. New Phytol 204:380–385. doi:10.1111/nph.12887

    Article  PubMed  Google Scholar 

  • Karban R, Yang LH, Edwards KF (2014b) Volatile communication between plants that affects herbivory: a meta-analysis. Ecol Lett 17:44–52. doi:10.1111/ele.12205

    Article  PubMed  Google Scholar 

  • Kegge W, Ninkovic V, Glinwood R, Welschen RAM, Voesenek L, Pierik R (2015) Red:far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants. Ann Bot 115:961–970. doi:10.1093/aob/mcv036

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim T-Y, Lee S-W, Oh M-K (2014) Biosynthesis of 2-phenylethanol from glucose with genetically engineered Kluyveromyces marxianus. Enzyme Microb Technol 61–62:44–47. doi:10.1016/j.enzmictec.2014.04.011

    Article  PubMed  CAS  Google Scholar 

  • Kissen R, Rossiter JT, Bones AM (2009) The ‘mustard oil bomb’: not so easy to assemble?! Localization, expression and distribution of the components of the myrosinase enzyme system. Phytochem Rev 8:69–86

    Article  CAS  Google Scholar 

  • Kleinheinz GT, Bagley ST, St John WP, Rughani JR, McGinnis GD (1999) Characterization of alpha-pinene-degrading microorganisms and application to a bench-scale biofiltration system for VOC degradation. Arch Environ Contam Toxicol 37:151–157

    Article  CAS  PubMed  Google Scholar 

  • Korpi A, Jarnberg J, Pasanen AL (2009) Microbial volatile organic compounds. Crit Rev Toxicol 39:139–193. doi:10.1080/10408440802291497

    Article  CAS  PubMed  Google Scholar 

  • Kostal V (1992) Orientation behavior of newly hatched larvae of the cabbage maggot, Delia radicum (L.) (Diptera, Anthomyiidae) to volatile plant metabolites. J Insect Behav 5:61–70

    Article  Google Scholar 

  • Kpoviessi DSS, Gbaguidi FA, Kossouoh C, Agbani P, Yayi-Ladekan E, Sinsin B, Moudachirou M, Accrombessi GC, Quetin-Leclercq J (2011) Chemical composition and seasonal variation of essential oil of Sclerocarya birrea (A. Rich.) Hochst subsp birrea leaves from Benin. J Med Plants 5:4640–4646

    CAS  Google Scholar 

  • Kulmatiski A, Anderson-Smith A, Beard KH, Doucette-Riise S, Mazzacavallo M, Nolan NE, Ramirez RA, Stevens JR (2014) Most soil trophic guilds increase plant growth: a meta-analytical review. Oikos 123:1409–1419. doi:10.1111/oik.01767

    Article  Google Scholar 

  • Kwon YS, Ryu CM, Lee S, Park HB, Han KS, Lee JH, Lee K, Chung WS, Jeong MJ, Kim HK, Bae DW (2010) Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles. Planta 232:1355–1370. doi:10.1007/s00425-010-1259-x

    Article  CAS  PubMed  Google Scholar 

  • Lauchli R, Pitzer J, Kitto RZ, Kalbarczyk KZ, Rabe KS (2014) Improved selectivity of an engineered multi-product terpene synthase. Org Biomol Chem 12:4013–4020. doi:10.1039/C4ob00479e

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Hung R, Yap M, Bennett JW (2015) Age matters: the effects of volatile organic compounds emitted by Trichoderma atroviride on plant growth. Arch Microbiol 197:723–727. doi:10.1007/s00203-015-1104-5

    Article  CAS  PubMed  Google Scholar 

  • Leger C, Riga E (2009) Evaluation of marigolds and entomopathogenic nematodes for control of the cabbage maggot Delia radicum. J Sustain Agric 33:128–141. doi:10.1080/10440040802394992

    Article  Google Scholar 

  • Loreto F, Schnitzler JP (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15:154–166. doi:10.1016/j.tplants.2009.12.006

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490. doi:10.1146/annurev.phyto.39.1.461

    Article  CAS  PubMed  Google Scholar 

  • Meldau DG, Meldau S, Hoang LH, Underberg S, Wunsche H, Baldwin IT (2013) Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. Plant Cell 25:2731–2747. doi:10.1105/tpc.113.114744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663. doi:10.1111/1574-6976.12028

    Article  CAS  PubMed  Google Scholar 

  • Minerdi D, Moretti M, Gilardi G, Barberio C, Gullino ML, Garibaldi A (2008) Bacterial ectosymbionts and virulence silencing in a Fusarium oxysporum strain. Environ Microbiol 10:1725–1741. doi:10.1111/j.1462-2920.2008.01594.x

    Article  CAS  PubMed  Google Scholar 

  • Mohney BK, Matz T, LaMoreaux J, Wilcox DS, Gimsing AL, Mayer P, Weidenhamer JD (2009) In situ silicone tube microextraction: a new method for undisturbed sampling of root-exuded thiophenes from Marigold (Tagetes erecta L.) in soil. J Chem Ecol 35:1279–1287. doi:10.1007/s10886-009-9711-8

    Article  CAS  PubMed  Google Scholar 

  • Morant AV, Jørgensen K, Jørgensen C, Paquette SM, Sánchez-Pérez R, Møller BL, Bak S (2008) ß-glucosidases as detonators of plant chemical defense. Phytochemistry 69:1795–1813

    Article  CAS  PubMed  Google Scholar 

  • Mumm R, Hilker M (2005) The significance of background odour for an egg parasitoid to detect plants with host eggs. Chem Senses 30:337–343

    Article  CAS  PubMed  Google Scholar 

  • Mundt JO, Hinkle NF (1976) Bacteria within ovules and seeds. Appl Environ Microbiol 32:694–698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naeem S (1998) Species redundancy and ecosystem reliability. Conserv Biol 12:39–45. doi:10.1111/j.1523-1739.1998.96379.x

    Article  Google Scholar 

  • Nelson EB (2004) Microbial dynamics and interactions in the spermosphere. Annu Rev Phytopathol 42:271–309. doi:10.1146/annurev.phyto.42.121603.131041

    Article  CAS  PubMed  Google Scholar 

  • Njoroge SMC, Riley MB, Keinath AP (2008) Effect of incorporation of Brassica spp. residues on population densities of soilborne microorganisms and on damping-off and Fusarium wilt of watermelon. Plant Dis 92:287–294. doi:10.1094/pdis-92-2-0287

    Article  CAS  Google Scholar 

  • Owen SM, Clark S, Pompe M, Semple KT (2007) Biogenic volatile organic compounds as potential carbon sources for microbial communities in soil from the rhizosphere of Populus tremula. FEMS Microbiol Lett 268:34–39. doi:10.1111/j.1574-6968.2006.00602.x

    Article  CAS  PubMed  Google Scholar 

  • Paul D, Park KS (2013) Identification of volatiles produced by Cladosporium cladosporioides CL-1, a fungal biocontrol agent that promotes plant growth. Sensors 13:13969–13977. doi:10.3390/s131013969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng M, Xie Q, Hu H, Hong K, Todd JD, Johnston AW, Li Y (2012) Phylogenetic diversity of the dddP gene for dimethylsulfoniopropionate-dependent dimethyl sulfide synthesis in mangrove soils. Can J Microbiol 58:523–530. doi:10.1139/w2012-019

    Article  CAS  PubMed  Google Scholar 

  • Peñuelas J, Munne-Bosch S (2005) Isoprenoids: an evolutionary pool for photoprotection. Trends Plant Sci 10:166–169

    Article  PubMed  CAS  Google Scholar 

  • Peñuelas J, Asensio D, Tholl D, Wenke K, Rosenkranz M, Piechulla B, Schnitzler JP (2014a) Biogenic volatile emissions from the soil. Plant Cell Environ 37:1866–1891. doi:10.1111/pce.12340

    Article  PubMed  CAS  Google Scholar 

  • Peñuelas J, Farré-Armengol G, Llusia J, Gargallo-Garriga A, Rico L, Sardans J, Terradas J, Filella I (2014b) Removal of floral microbiota reduces floral terpene emissions. Sci Rep 4:4. doi:10.1038/srep06727

    Article  CAS  Google Scholar 

  • Pierik R, Tholen D, Poorter H, Visser EJW, Voesenek L (2006) The Janus face of ethylene: growth inhibition and stimulation. Trends Plant Sci 11:176–183. doi:10.1016/j.tplants.2006.02.006

    Article  CAS  PubMed  Google Scholar 

  • Potter MJ, Davies K, Rathjen AJ (1998) Suppressive impact of glucosinolates in Brassica vegetative tissues on root lesion nematode Pratylenchus neglectus. J Chem Ecol 24:67–80

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moenne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361. doi:10.1007/s11104-008-9568-6

    Article  CAS  Google Scholar 

  • Rasmann S, Turlings TCJ (2008) First insights into specificity of belowground tritrophic interactions. Oikos 117:362–369. doi:10.1111/j.2007.0030-1299.16204.x

    Article  Google Scholar 

  • Rasmann S, Kollner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737. doi:10.1038/nature03451

    Article  CAS  PubMed  Google Scholar 

  • Rasmann S, Erwin AC, Halitschke R, Agrawal AA (2011) Direct and indirect root defences of milkweed (Asclepias syriaca): trophic cascades, trade-offs and novel methods for studying subterranean herbivory. J Ecol 99:16–25. doi:10.1111/j.1365-2745.2010.01713.x

    Article  CAS  Google Scholar 

  • Richter A, Seidl-Adams I, Kollner TG, Schaff C, Tumlinson JH, Degenhardt J (2015) A small, differentially regulated family of farnesyl diphosphate synthases in maize (Zea mays) provides farnesyl diphosphate for the biosynthesis of herbivore-induced sesquiterpenes. Planta 241:1351–1361. doi:10.1007/s00425-015-2254-z

    Article  CAS  PubMed  Google Scholar 

  • Robert CAM, Erb M, Duployer M, Zwahlen C, Doyen GR, Turlings TCJ (2012) Herbivore-induced plant volatiles mediate host selection by a root herbivore. New Phytol 194:1061–1069. doi:10.1111/j.1469-8137.2012.04127.x

    Article  CAS  PubMed  Google Scholar 

  • Rostás M, Cripps MG, Silcock P (2015) Aboveground endophyte affects root volatile emission and host plant selection of a belowground insect. Oecologia 177:487–497. doi:10.1007/s00442-014-3104-6

    Article  PubMed  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932. doi:10.1073/pnas.0730845100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026. doi:10.1104/pp.103.026583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sacchetti G, Romagnoli C, Bruni A, Poli F (2001) Secretory tissue ultrastructure in Tagetes patula L. (Asteraceae) and thiophene localization through X-ray microanalysis. Phyton 41:35–47

    CAS  Google Scholar 

  • Samudrala D, Brown PA, Mandon J, Cristescu SM, Harren FJM (2015) Optimization and sensitive detection of sulfur compounds emitted from plants using proton transfer reaction mass spectrometry. Int J Mass Spectrom 386:6–14. doi:10.1016/j.ijms.2015.05.013

    Article  CAS  Google Scholar 

  • Sarwar M, Kirkegaard JA, Wong PTW, Desmarchelier JM (1998) Biofumigation potential of brassicas—III. In vitro toxicity of isothiocyanates to soil-borne fungal pathogens. Plant Soil 201:103–112

    Article  CAS  Google Scholar 

  • Schmid C, Bauer S, Muller B, Bartelheimer M (2013) Belowground neighbor perception in Arabidopsis thaliana studied by transcriptome analysis: roots of Hieracium pilosella cause biotic stress. Front Plant Sci 4:17. doi:10.3389/fpls.2013.00296

    Article  Google Scholar 

  • Schrey SD, Schellhammer M, Ecke M, Hampp R, Tarkka MT (2005) Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol 168:205–216. doi:10.1111/j.1469-8137.2005.01518.x

    Article  CAS  PubMed  Google Scholar 

  • Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842. doi:10.1039/b507392h

    Article  CAS  PubMed  Google Scholar 

  • Schulz-Bohm K, Zweers H, de Boer W, Garbeva P (2015) A fragrant neighborhood: volatile mediated bacterial interactions in soil. Front Microbiol. doi:10.3389/fmicb.2015.01212

    PubMed  PubMed Central  Google Scholar 

  • Semchenko M, Saar S, Lepik A (2014) Plant root exudates mediate neighbour recognition and trigger complex behavioural changes. New Phytol 204:631–637. doi:10.1111/nph.12930

    Article  PubMed  Google Scholar 

  • Singh SK, Strobel GA, Knighton B, Geary B, Sears J, Ezra D (2011) An endophytic Phomopsis sp. possessing bioactivity and fuel potential with its volatile organic compounds. Microb Ecol 61:729–739. doi:10.1007/s00248-011-9818-7

    Article  PubMed  Google Scholar 

  • Son SH, Khan Z, Kim SG, Kim YH (2009) Plant growth-promoting rhizobacteria, Paenibacillus polymyxa and Paenibacillus lentimorbus suppress disease complex caused by root-knot nematode and fusarium wilt fungus. J Appl Microbiol 107:524–532. doi:10.1111/j.1365-2672.2009.04238.x

    Article  CAS  PubMed  Google Scholar 

  • Song C, Schmidt RL, de Jager VCL, Krzyzanowska D, Jongedijk E, Cankar K, Beekwilder J, van Veen A, de Boer W, van Veen JA, Garbeva P (2015) Exploring the genomic traits of fungusfeeding bacterial genus Collimonas. BMC Genomics 16(1103). doi:10.1186/s12864-015-2289-3

  • Splivallo R, Ottonello S, Mello A, Karlovsky P (2011) Truffle volatiles: from chemical ecology to aroma biosynthesis. New Phytol 189:688–699. doi:10.1111/j.1469-8137.2010.03523.x

    Article  CAS  PubMed  Google Scholar 

  • Steeghs M, Bais HP, de Gouw J, Goldan P, Kuster W, Northway M, Fall R, Vivanco JM (2004) Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis. Plant Physiol 135:47–58. doi:10.1104/pp.104.038703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart-Jones A, Poppy GM (2006) Comparison of glass vessels and plastic bags for enclosing living plant parts for headspace analysis. J Chem Ecol 32:845–864

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147:2943–2950

    Article  CAS  PubMed  Google Scholar 

  • Strobel G, Singh SK, Riyaz-Ul-Hassan S, Mitchell AM, Geary B, Sears J (2011) An endophytic/pathogenic Phoma sp from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiol Lett 320:87–94. doi:10.1111/j.1574-6968.2011.02297.x

    Article  CAS  PubMed  Google Scholar 

  • Tang CS, Wat CK, Towers GHN (1987) Thiophenes and benzofurans in the undisturbed rhizosphere of Tagetes patula L. Plant Soil 98:93–97. doi:10.1007/bf02381730

    Article  CAS  Google Scholar 

  • Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact 13:637–648. doi:10.1094/mpmi.2000.13.6.637

    Article  CAS  PubMed  Google Scholar 

  • Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9:297–304. doi:10.1016/j.pbi.2006.03.014

    Article  CAS  PubMed  Google Scholar 

  • Todd JD, Rogers R, Li YG, Wexler M, Bond PL, Sun L, Curson AR, Malin G, Steinke M, Johnston AW (2007) Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria. Science 315:666–669. doi:10.1126/science.1135370

    Article  CAS  PubMed  Google Scholar 

  • Todd JD, Curson AR, Kirkwood M, Sullivan MJ, Green RT, Johnston AW (2011) DddQ, a novel, cupin-containing, dimethylsulfoniopropionate lyase in marine roseobacters and in uncultured marine bacteria. Environ Microbiol 13:427–438. doi:10.1111/j.1462-2920.2010.02348.x

    Article  CAS  PubMed  Google Scholar 

  • Todd JD, Kirkwood M, Newton-Payne S, Johnston AW (2012) DddW, a third DMSP lyase in a model Roseobacter marine bacterium, Ruegeria pomeroyi DSS-3. ISME J 6:223–226. doi:10.1038/ismej.2011.79

    Article  CAS  PubMed  Google Scholar 

  • Traxler MF, Watrous JD, Alexandrov T, Dorrestein PC, Kolter R (2013) Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome. MBio 4. doi:10.1128/mBio.00459-13

  • Tyc O, van den Berg M, Gerards S, van Veen JA, Raaijmakers JM, de Boer W, Garbeva P (2014) Impact of interspecific interactions on antimicrobial activity among soil bacteria. Front Microbiol 5. doi:10.3389/fmicb.2014.00567

  • van Dam NM (2009) Belowground herbivory and plant defenses. Annu Rev Ecol Evol Syst 40:373–392

    Article  Google Scholar 

  • van Dam NM, Tytgat TOG, Kirkegaard JA (2009) Root and shoot glucosinolates: a comparison of their diversity, function and interactions in natural and managed ecosystems. Phytochem Rev 8:171–186

    Article  CAS  Google Scholar 

  • van Dam NM, Qiu BL, Hordijk CA, Vet LEM, Jansen JJ (2010) Identification of biologically relevant compounds in aboveground and belowground induced volatile blends. J Chem Ecol 36:1006–1016. doi:10.1007/s10886-010-9844-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Dam NM, Samudrala D, Harren FJM, Cristescu SM (2012) Real-time analysis of sulfur-containing volatiles in Brassica plants infested with root-feeding Delia radicum larvae using proton-transfer reaction mass spectrometry. AoB Plants. doi:10.1093/aobpla/pls1021

    PubMed  PubMed Central  Google Scholar 

  • van der Heijden MGA, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423. doi:10.1111/nph.13288

    Article  PubMed  CAS  Google Scholar 

  • van Tol RHWM, van der Sommen ATC, Boff MIC, van Bezooijen J, Sabelis MW, Smits PH (2001) Plants protect their roots by alerting the enemies of grubs. Ecol Lett 4:292–294. doi:10.1046/j.1461-0248.2001.00227.x

    Article  Google Scholar 

  • Vaughan MM, Wang Q, Webster FX, Kiemle D, Hong YJ, Tantillo DJ, Coates RM, Wray AT, Askew W, O’Donnell C, Tokuhisa JG, Tholl D (2013) Formation of the unusual semivolatile diterpene rhizathalene by the Arabidopsis class I terpene synthase TPS08 in the root stele is involved in defense against belowground herbivory. Plant Cell 25:1108–1125. doi:10.1105/tpc.112.100057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaughn SF, Boydston RA (1997) Volatile allelochemicals released by crucifer green manures. J Chem Ecol 23:2107–2116

    Article  CAS  Google Scholar 

  • Vespermann A, Kai M, Piechulla B (2007) Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl Environ Microbiol 73:5639–5641. doi:10.1128/aem.01078-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vet LEM, Wäckers FL, Dicke M (1991) How to hunt for hiding hosts—the reliability-detectability problem in foraging parasitoids. Neth J Zool 41:202–213

    Article  Google Scholar 

  • Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weise T, Kai M, Gummesson A, Troeger A, von Reuss S, Piepenborn S, Kosterka F, Sklorz M, Zimmermann R, Francke W, Piechulla B (2012) Volatile organic compounds produced by the phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria 85–10. Beilstein J Org Chem 8:579–596. doi:10.3762/bjoc.8.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weisskopf L, Heller S, Eberl L (2011) Burkholderia species are major inhabitants of white lupin cluster roots. Appl Environ Microbiol 77:7715–7720. doi:10.1128/aem.05845-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weissteiner S, Huetteroth W, Kollmann M, Weißbecker B, Romani R, Schachtner J et al (2012) Cockchafer larvae smell host root scents in soil. PLoS One 7(10):e45827. doi:10.1371/journal.pone.0045827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welte C, De Graaf RM, van den Bosch TJM, Op den Camp HJM, van Dam NM, Jetten MJM (2015) Plasmids from the gut microbiome of cabbage root fly larvae encode SaxA that catalyzes the conversion of the plant toxin 2-phenylethyl isothiocyanate. Environ Microbiol 8:1379-90. doi: 10.1111/1462-2920.12997

    Google Scholar 

  • Wenke K, Kai M, Piechulla B (2010) Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231:499–506. doi:10.1007/s00425-009-1076-2

    Article  CAS  PubMed  Google Scholar 

  • Wheatley RE (2002) The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 81:357–364. doi:10.1023/a:1020592802234

    Article  CAS  Google Scholar 

  • Wiesner J, Reichenberg A, Hintz M, Ortmann R, Schlitzer M, Van Calenbergh S, Borrmann S, Lell B, Kremsner PG, Hutchinson D, Jomaa H (2013) Fosmidomycin as an antimalarial agent. In: Bach TJ, Rohmer M (eds) Isoprenoid synthesis in plants and microorganisms. New concepts and experimental approaches. Springer, New York, NY, pp 119–137

    Google Scholar 

  • Wittstock U, Kliebenstein DJ, Lambrix V, Reichelt M, Gershenson J (2003) Glucosinolate hydrolysis and its impact on generalist and specialist herbivores. In: Romeo JT (ed) Integrative phytochemistry: from ethnobotany to molecular ecology, vol 37. Pergamon, Amsterdam

    Google Scholar 

  • Yamada Y, Cane DE, Ikeda H (2012) Diversity and analysis of bacterial terpene synthases. Methods Enzymol 515:123–162

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Kuzuyama T, Komatsu M, Shin-Ya K, Omura S, Cane DE, Ikeda H (2015) Terpene synthases are widely distributed in bacteria. Proc Natl Acad Sci USA 112:857–862. doi:10.1073/pnas.1422108112

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Wang J, Li D (2013) Microextraction techniques for the determination of volatile and semivolatile organic compounds from plants: a review. Anal Chim Acta 799:8–22. doi:10.1016/j.aca.2013.07.069

    Article  CAS  PubMed  Google Scholar 

  • Yeo H, Youn K, Kim M, Yun E-Y, Hwang J-S, Jeong W-S, Jun M (2013) Fatty acid composition and volatile constituents of Protaetia brevitarsis larvae. Prev Nutr Food Sci 18:150–156. doi:10.3746/pnf.2013.18.2.150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshikuni Y, Martin VJ, Ferrin TE, Keasling JD (2006) Engineering cotton (+)-delta-cadinene synthase to an altered function: germacrene D-4-ol synthase. Chem Biol 13:91–98. doi:10.1016/j.chembiol.2005.10.016

    Article  CAS  PubMed  Google Scholar 

  • Zamioudis C, Mastranesti P, Dhonukshe P, Blilou I, Pieterse CMJ (2013) Unraveling root developmental programs initiated by beneficial Pseudomonas spp. bacteria. Plant Physiol 162:304–318. doi:10.1104/pp.112.212597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag MA, Ryu CM, Allen R, Melo IS, Pare PW (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851. doi:10.1007/s00425-007-0530-2

    Article  CAS  PubMed  Google Scholar 

  • Zhang HM, Sun Y, Xie XT, Kim MS, Dowd SE, Pare PW (2009) A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J 58:568–577. doi:10.1111/j.1365-313X.2009.03803.x

    Article  CAS  PubMed  Google Scholar 

  • Zhao N, Guan J, Forouhar F, Tschaplinski TJ, Cheng ZM, Tong L, Chen F (2009) Two poplar methyl salicylate esterases display comparable biochemical properties but divergent expression patterns. Phytochemistry 70:32–39. doi:10.1016/j.phytochem.2008.11.014

    Article  CAS  PubMed  Google Scholar 

  • Zou C-S, Mo M-H, Gu Y-Q, Zhou J-P, Zhang K-Q (2007) Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biol Biochem 39:2371–2379. doi:10.1016/j.soilbio.2007.04.009

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole M. van Dam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van Dam, N.M., Weinhold, A., Garbeva, P. (2016). Calling in the Dark: The Role of Volatiles for Communication in the Rhizosphere. In: Blande, J., Glinwood, R. (eds) Deciphering Chemical Language of Plant Communication. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-33498-1_8

Download citation

Publish with us

Policies and ethics