Skip to main content

Models for the Prediction of Antimicrobial Peptides Activity

  • Conference paper
  • First Online:
  • 616 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 587))

Abstract

Antimicrobial peptides AMP are small proteins produced by the innate immune system in multicellular microorganisms. The mechanism of action of AMP on target membranes can be divided in two main categories: pore forming and non-pore forming mechanisms. We applied a computational approach to design novel linear peptides having high specificity and low toxicity against common pathogens. We built up QSAR models using the data present in a database of antimicrobial peptides. Here, we present new models of activities obtained by the use of evolutionary methods and the relative statistical validation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Liu, C., et al.: Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin. Infect. Dis. 52(3), e18–55 (2011) (ciq146)

    Article  Google Scholar 

  2. Cruz, J., et al.: Antimicrobial peptides: promising compounds against pathogenic microorganisms. Curr. Med. Chem. 21(20), 2299–2321 (2014)

    Article  MathSciNet  Google Scholar 

  3. Cirac, A.D., et al.: The molecular basis for antimicrobial activity of pore-forming cyclic peptides. Biophys. J. 100(10), 2422–2431 (2011)

    Article  Google Scholar 

  4. Török, Z., et al.: Plasma membranes as heat stress sensors: from lipid-controlled molecular switches to therapeutic applications. Biochim. Biophys. Acta (BBA)-Biomembr. 1838(6), 1594–1618 (2014)

    Article  Google Scholar 

  5. Scrima, M., et al.: Structural features of the C8 antiviral peptide in a membrane-mimicking environment. Biochim. Biophys. (BBA)-Biomembr. 1838(3), 1010–1018 (2014)

    Article  Google Scholar 

  6. Marr, A.K., Gooderham, W.J., Hancock, R.E.: Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr. Opin. Pharmacol. 6(5), 468–472 (2006)

    Article  Google Scholar 

  7. Wang, G.: Human antimicrobial peptides and proteins. Pharmaceuticals 7(5), 545–594 (2014)

    Article  Google Scholar 

  8. Scheetz, T., et al.: Genomics-based approaches to gene discovery in innate immunity. Immunol. Rev. 190(1), 137–145 (2002)

    Article  Google Scholar 

  9. Hancock, R.E., Chapple, D.S.: Peptide antibiotics. Antimicrob. Agents Chemother. 43(6), 1317–1323 (1999)

    Google Scholar 

  10. Lata, S., Sharma, B., Raghava, G.: Analysis and prediction of antibacterial peptides. BMC Bioinform. 8(1), 263 (2007)

    Article  Google Scholar 

  11. Holland, J.H.: Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press, Cambridge (1992)

    Google Scholar 

  12. Piotto, S.P., et al.: YADAMP: yet another database of antimicrobial peptides. Int. J. Antimicrob. Agents 39(4), 346–351 (2012)

    Article  Google Scholar 

  13. Accelrys, Accelrys Materials Studio. Accelrys Inc., San Diego, California (2014)

    Google Scholar 

  14. MATLAB, R.: Version 8.1. 0.604 (R2013a). The MathWorks Inc., Natrick, Massachusetts (2013)

    Google Scholar 

  15. Chen, L., et al.: How the antimicrobial peptides kill bacteria: computational physics insights. Commun. Comput. Phys. 11(3), 709 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Piotto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Parisi, R., Moccia, I., Sessa, L., Di Biasi, L., Concilio, S., Piotto, S. (2016). Models for the Prediction of Antimicrobial Peptides Activity. In: Rossi, F., Mavelli, F., Stano, P., Caivano, D. (eds) Advances in Artificial Life, Evolutionary Computation and Systems Chemistry. WIVACE 2015. Communications in Computer and Information Science, vol 587. Springer, Cham. https://doi.org/10.1007/978-3-319-32695-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32695-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32694-8

  • Online ISBN: 978-3-319-32695-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics