Skip to main content

ACL Injury Mechanisms: Lessons Learned from Video Analysis

  • Chapter
  • First Online:
Rotatory Knee Instability

Abstract

A detailed description of noncontact anterior cruciate ligament (ACL) injury mechanisms is crucial to develop ACL injury prevention programs. A model-based image-matching (MBIM) technique has enabled detailed video analysis of injury situations, a task previously limited to simple visual inspection. The current authors have analyzed 11 different ACL injury situations from videotapes using the MBIM technique. The knee kinematic patterns were remarkably consistent, displaying immediate valgus, internal rotation motion, and anterior tibial translation, all occurring within the first 40 ms after initial ground contact. Peak vertical ground reaction force occurred at 40 ms after the initial ground contact. Based on these results, it is likely that the ACL injury occurred approximately 40 ms after the initial ground contact. In contrast, hip joint angles remained unchanged at an internally rotated position during the first 40 ms after initial ground contact. Based on these results and previous key studies, we proposed a new hypothesis for ACL injury mechanisms: lateral knee compression caused by valgus loading and the anterior force vector caused by quadriceps contraction, causing a displacement of the femur relative to the tibia where the lateral femoral condyle shifts posteriorly, due to the joint geometry, and the tibia translates anteriorly and rotates internally, thereby resulting in ACL rupture. The fact that there is limited hip joint movement indicates that hip energy absorption may be limited, thus contributing to the injury. These results suggest that prevention programs should focus on acquiring a cutting and landing technique that avoids knee valgus and internal rotation during knee flexion and adequate hip flexion to absorb energy from ground reaction force, as well as avoiding excessive hip internal rotation. Moreover, the fact that the ACL injury occurs 40 ms after initial ground contact suggests that “feed-forward” strategies before landing, controlling knee and hip motion before landing, may be critical, as “feedback” strategies to correct inappropriate hip and knee motion after landing cannot prevent ACL injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boden BP, Dean GS, Feagin JA Jr, Garrett WE Jr (2000) Mechanisms of anterior cruciate ligament injury. Orthopedics 23(6):573–578

    CAS  PubMed  Google Scholar 

  2. Krosshaug T, Nakamae A, Boden BP, Engebretsen L, Smith G, Slauterbeck JR, Hewett TE, Bahr R (2007) Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med 35(3):359–367

    Article  PubMed  Google Scholar 

  3. Olsen OE, Myklebust G, Engebretsen L, Bahr R (2004) Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med 32(4):1002–1012

    Article  PubMed  Google Scholar 

  4. Caraffa A, Cerulli G, Projetti M, Aisa G, Rizzo A (1996) Prevention of anterior cruciate ligament injuries in soccer. A prospective controlled study of proprioceptive training. Knee Surg Sports Traumatol Arthrosc 4(1):19–21

    Article  CAS  PubMed  Google Scholar 

  5. Gilchrist J, Mandelbaum BR, Melancon H, Ryan GW, Silvers HJ, Griffin LY, Watanabe DS, Dick RW, Dvorak J (2008) A randomized controlled trial to prevent noncontact anterior cruciate ligament injury in female collegiate soccer players. Am J Sports Med 36(8):1476–1483

    Article  PubMed  Google Scholar 

  6. Mandelbaum BR, Silvers HJ, Watanabe DS, Knarr JF, Thomas SD, Griffin LY, Kirkendall DT, Garrett W Jr (2005) Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes: 2-year follow-up. Am J Sports Med 33(7):1003–1010

    Article  PubMed  Google Scholar 

  7. Myklebust G, Engebretsen L, Braekken IH, Skjolberg A, Olsen OE, Bahr R (2003) Prevention of anterior cruciate ligament injuries in female team handball players: a prospective intervention study over three seasons. Clin J Sport Med 13(2):71–78

    Article  PubMed  Google Scholar 

  8. Olsen OE, Myklebust G, Engebretsen L, Holme I, Bahr R (2005) Exercises to prevent lower limb injuries in youth sports: cluster randomised controlled trial. BMJ 330(7489):449

    Article  PubMed  PubMed Central  Google Scholar 

  9. Krosshaug T, Andersen TE, Olsen OE, Myklebust G, Bahr R (2005) Research approaches to describe the mechanisms of injuries in sport: limitations and possibilities. Br J Sports Med 39(6):330–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. DeMorat G, Weinhold P, Blackburn T, Chudik S, Garrett W (2004) Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am J Sports Med 32(2):477–483

    Article  PubMed  Google Scholar 

  11. Yu B, Garrett WE (2007) Mechanisms of non-contact ACL injuries. Br J Sports Med 41(Suppl 1):i47–i51

    Article  PubMed  PubMed Central  Google Scholar 

  12. McLean SG, Andrish JT, van den Bogert AJ (2005) Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am J Sports Med 33(7):1106; author reply 1106–1107

    Article  PubMed  Google Scholar 

  13. McLean SG, Huang X, Su A, Van Den Bogert AJ (2004) Sagittal plane biomechanics cannot injure the ACL during sidestep cutting. Clin Biomech (Bristol, Avon) 19(8):828–838

    Article  Google Scholar 

  14. Hewett TE, Myer GD, Ford KR, Heidt RS Jr, Colosimo AJ, McLean SG, van den Bogert AJ, Paterno MV, Succop P (2005) Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med 33(4):492–501

    Article  PubMed  Google Scholar 

  15. Quatman CE, Hewett TE (2009) The anterior cruciate ligament injury controversy: is “valgus collapse” a sex-specific mechanism? Br J Sports Med 43(5):328–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mazzocca AD, Nissen CW, Geary M, Adams DJ (2003) Valgus medial collateral ligament rupture causes concomitant loading and damage of the anterior cruciate ligament. J Knee Surg 16(3):148–151

    PubMed  Google Scholar 

  17. Shin CS, Chaudhari AM, Andriacchi TP (2009) The effect of isolated valgus moments on ACL strain during single-leg landing: a simulation study. J Biomech 42(3):280–285

    Article  PubMed  Google Scholar 

  18. Withrow TJ, Huston LJ, Wojtys EM, Ashton-Miller JA (2006) The effect of an impulsive knee valgus moment on in vitro relative ACL strain during a simulated jump landing. Clin Biomech (Bristol, Avon) 21(9):977–983

    Article  Google Scholar 

  19. Speer KP, Spritzer CE, Bassett FH 3rd, Feagin JA Jr, Garrett WE Jr (1992) Osseous injury associated with acute tears of the anterior cruciate ligament. Am J Sports Med 20(4):382–389

    Article  CAS  PubMed  Google Scholar 

  20. Matsumoto H (1990) Mechanism of the pivot shift. J Bone Joint Surg Br 72(5):816–821

    CAS  PubMed  Google Scholar 

  21. Matsumoto H, Suda Y, Otani T, Niki Y, Seedhom BB, Fujikawa K (2001) Roles of the anterior cruciate ligament and the medial collateral ligament in preventing valgus instability. J Orthop Sci 6(1):28–32

    Article  CAS  PubMed  Google Scholar 

  22. Ebstrup JF, Bojsen-Moller F (2000) Anterior cruciate ligament injury in indoor ball games. Scand J Med Sci Sports 10(2):114–116

    Article  CAS  PubMed  Google Scholar 

  23. Cochrane JL, Lloyd DG, Buttfield A, Seward H, McGivern J (2007) Characteristics of anterior cruciate ligament injuries in Australian football. J Sci Med Sport 10(2):96–104

    Article  PubMed  Google Scholar 

  24. Krosshaug T, Nakamae A, Boden B, Engebretsen L, Smith G, Slauterbeck J, Hewett TE, Bahr R (2007) Estimating 3D joint kinematics from video sequences of running and cutting maneuvers--assessing the accuracy of simple visual inspection. Gait Posture 26(3):378–385

    Article  PubMed  Google Scholar 

  25. Krosshaug T, Bahr R (2005) A model-based image-matching technique for three-dimensional reconstruction of human motion from uncalibrated video sequences. J Biomech 38(4):919–929

    Article  PubMed  Google Scholar 

  26. Koga H, Nakamae A, Shima Y, Iwasa J, Myklebust G, Engebretsen L, Bahr R, Krosshaug T (2010) Mechanisms for noncontact anterior cruciate ligament injuries: knee joint kinematics in 10 injury situations from female team handball and basketball. Am J Sports Med 38(11):2218–2225

    Article  PubMed  Google Scholar 

  27. Koga H, Bahr R, Myklebust G, Engebretsen L, Grund T, Krosshaug T (2011) Estimating anterior tibial translation from model-based image-matching of a noncontact anterior cruciate ligament injury in professional football: a case report. Clin J Sport Med 21(3):271–274

    Article  PubMed  Google Scholar 

  28. Krosshaug T, Slauterbeck JR, Engebretsen L, Bahr R (2007) Biomechanical analysis of anterior cruciate ligament injury mechanisms: three-dimensional motion reconstruction from video sequences. Scand J Med Sci Sports 17(5):508–519

    Article  CAS  PubMed  Google Scholar 

  29. Jakob RP, Staubli HU, Deland JT (1987) Grading the pivot shift. Objective tests with implications for treatment. J Bone Joint Surg Br 69(2):294–299

    CAS  PubMed  Google Scholar 

  30. Meyer EG, Haut RC (2008) Anterior cruciate ligament injury induced by internal tibial torsion or tibiofemoral compression. J Biomech 41(16):3377–3383

    Article  PubMed  Google Scholar 

  31. Shin CS, Chaudhari AM, Andriacchi TP (2007) The influence of deceleration forces on ACL strain during single-leg landing: a simulation study. J Biomech 40(5):1145–1152

    Article  PubMed  Google Scholar 

  32. Decker MJ, Torry MR, Wyland DJ, Sterett WI, Richard Steadman J (2003) Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clin Biomech (Bristol, Avon) 18(7):662–669

    Article  Google Scholar 

  33. Schmitz RJ, Kulas AS, Perrin DH, Riemann BL, Shultz SJ (2007) Sex differences in lower extremity biomechanics during single leg landings. Clin Biomech (Bristol, Avon) 22(6):681–688

    Article  Google Scholar 

  34. Hashemi J, Chandrashekar N, Jang T, Karpat F, Oseto M, Ekwaro-Osire S (2007) An alternative mechanism of non-contact anterior cruciate ligament injury during jump-landing: in-vitro simulation. Exp Mech 47:347–354

    Article  Google Scholar 

  35. Boden BP, Torg JS, Knowles SB, Hewett TE (2009) Video analysis of anterior cruciate ligament injury: abnormalities in hip and ankle kinematics. Am J Sports Med 37(2):252–259

    Article  PubMed  Google Scholar 

  36. Hashemi J, Breighner R, Chandrashekar N, Hardy DM, Chaudhari AM, Shultz SJ, Slauterbeck JR, Beynnon BD (2011) Hip extension, knee flexion paradox: a new mechanism for non-contact ACL injury. J Biomech 44(4):577–585

    Article  PubMed  Google Scholar 

  37. Gomes JL, de Castro JV, Becker R (2008) Decreased hip range of motion and noncontact injuries of the anterior cruciate ligament. Arthroscopy 24(9):1034–1037

    Article  PubMed  Google Scholar 

  38. Yamazaki J, Muneta T, Ju YJ, Morito T, Okuwaki T, Sekiya I (2011) Hip acetabular dysplasia and joint laxity of female anterior cruciate ligament-injured patients. Am J Sports Med 39(2):410–414

    Article  PubMed  Google Scholar 

  39. Beaulieu ML, Oh YK, Bedi A, Ashton-Miller JA, Wojtys EM (2014) Does limited internal femoral rotation increase peak anterior cruciate ligament strain during a simulated pivot landing? Am J Sports Med 42(12):2955–2963

    Article  PubMed  Google Scholar 

  40. Brandon ML, Haynes PT, Bonamo JR, Flynn MI, Barrett GR, Sherman MF (2006) The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy 22(8):894–899

    Article  PubMed  Google Scholar 

  41. Stijak L, Herzog RF, Schai P (2008) Is there an influence of the tibial slope of the lateral condyle on the ACL lesion? A case–control study. Knee Surg Sports Traumatol Arthrosc 16(2):112–117

    Article  PubMed  Google Scholar 

  42. Hashemi J, Chandrashekar N, Mansouri H, Gill B, Slauterbeck JR, Schutt RC Jr, Dabezies E, Beynnon BD (2010) Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med 38(1):54–62

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Koga MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Koga, H., Muneta, T., Bahr, R., Engebretsen, L., Krosshaug, T. (2017). ACL Injury Mechanisms: Lessons Learned from Video Analysis. In: Musahl, V., Karlsson, J., Kuroda, R., Zaffagnini, S. (eds) Rotatory Knee Instability. Springer, Cham. https://doi.org/10.1007/978-3-319-32070-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32070-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32069-4

  • Online ISBN: 978-3-319-32070-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics