Skip to main content

Wind Power Prediction with Machine Learning

  • Chapter
  • First Online:
Computational Sustainability

Part of the book series: Studies in Computational Intelligence ((SCI,volume 645))

Abstract

Better prediction models for the upcoming supply of renewable energy are important to decrease the need of controlling energy provided by conventional power plants. Especially for successful power grid integration of the highly volatile wind power production, a reliable forecast is crucial. In this chapter, we focus on short-term wind power prediction and employ data from the National Renewable Energy Laboratory (NREL), which are designed for a wind integration study in the western part of the United States. In contrast to physical approaches based on very complex differential equations, our model derives functional dependencies directly from the observations. Hereby, we formulate the prediction task as regression problem and test different regression techniques such as linear regression, k-nearest neighbors and support vector regression. In our experiments, we analyze predictions for individual turbines as well as entire wind parks and show that a machine learning approach yields feasible results for short-term wind power prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.nrel.gov/.

References

  1. Catalao, J.P.S., Pousinho, H.M.I., Mendes, V.M.F.: An artificial neural network approach for short-term wind power forecasting in Portugal. In: 15th International Conference on Intelligent System Applications to Power Systems (2009)

    Google Scholar 

  2. Costa, A., Crespo, A., Navarro, J., Lizcano, G., Feitosa, H.M.E.: A review on the young history of the wind power short-term prediction. Renew. Sustain. Energy Rev. 12(6), 1725–1744 (2008)

    Article  Google Scholar 

  3. Ernst, B., Oakleaf, B., Ahlstrom, M., Lange, M., Moehrlen, C., Lange, B., Focken, U., Rohrig, K.: Predicting the wind. Power Energy Mag. 5(6), 78–89 (2007)

    Article  Google Scholar 

  4. Focken, U., Lange, M., Mönnich, K., Waldl, H., Beyer, H., Luig, A.: Short-term prediction of the aggregated power output of wind farms—a statistical analysis of the reduction of the prediction error by spatial smoothing effects. J. Wind Eng. Ind. Aerodyn. 90(3), 231–246 (2002)

    Article  Google Scholar 

  5. Foresti, L., Tuia, D., Kanevski, M., Pozdnoukhov, A.: Learning wind fields with multiple kernels. Stoch. Env. Res. Risk Assess. 25(1), 51–66 (2011)

    Article  Google Scholar 

  6. Heinermann, J., Kramer, O.: Precise wind power prediction with SVM ensemble regression. In: Artificial Neural Networks and Machine Learning—ICANN 2014, pp. 797–804. Springer, Switzerland (2014)

    Google Scholar 

  7. Han, S., Liu, Y., Yan, J.: Neural network ensemble method study for wind power prediction. In: Asia Pacific Power and Energy Engineering Conference (APPEEC) (2011)

    Google Scholar 

  8. Juban, J., Fugon, L., Kariniotakis, G.: Probabilistic short-term wind power forecasting based on kernel. In: Density Estimators. European Wind Energy Conference, pp. 683–688. IEEE (2007)

    Google Scholar 

  9. Kramer, O., Gieseke, F., Heinermann, J., Poloczek, J., Treiber, N.A.: A framework for data mining in wind power time series. In: Proceedings of ECML Workshop DARE (2014)

    Google Scholar 

  10. Kramer, O., Gieseke, F.: Short-term wind energy forecasting using support vector regression. In: 6th International Conference on Soft Computing Models in Industrial and Environmental Applications (2011)

    Google Scholar 

  11. Kramer, O., Gieseke, F.: Analysis of wind energy time series with kernel methods and neural networks. In: 7th International Conference on Natural Computation (2011)

    Google Scholar 

  12. Kramer, O., Treiber, N.A., Sonnenschein, M.: Wind power ramp event prediction with support vector machines. In: 9th International Conference on Hybrid Artificial Intelligence Systems (2014)

    Google Scholar 

  13. Mohandes, M.A., Rehmann, S., Halawani, T.O.: A neural networks approach for wind speed prediction. Renew. Energy 13(3), 345–354 (1998)

    Article  Google Scholar 

  14. Lew, D., Milligan, M., Jordan, G., Freeman, L., Miller, N., Clark, K., Piwko, R.: How do wind and solar power affect grid operations: the western wind and solar integration study. In: 8th International Workshop on Large Scale Integration of Wind Power and on Transmission Networks for Offshore Wind Farms (2009)

    Google Scholar 

  15. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Pöller, M., Achilles, S.: Aggregated wind park models for analyzing power system dynamics. In: 4th International Workshop on Large-scale Integration of Wind Power and Transmission Networks for Offshore Wind Farms, Billund (2003)

    Google Scholar 

  17. Poloczek, J., Treiber, N.A., Kramer, O.: KNN regression as geo-imputation method for spatio-temporal wind data. In: 9th International Conference on Soft Computing Models in Industrial and Environmental Applications (2014)

    Google Scholar 

  18. Robusto, C.C.: The Cosine-Haversine formula. Am. Math. Mon. 64(1), 38–40 (1957)

    Article  MathSciNet  Google Scholar 

  19. Soman, S.S., Zareipour, H., Malik, O., Mandal, P.: A review of wind power and wind speed forecasting methods with different time horizons. In: North American Power Symposium (NAPS), pp. 1–8 (2010)

    Google Scholar 

  20. Treiber, N.A., Kramer, O.: Evolutionary turbine selection for wind power predictions. In: 37th Annual German Conference on AI, pp. 267–272 (2014)

    Google Scholar 

  21. Treiber, N.A., Heinermann, J., Kramer, O.: Aggregation of features for wind energy prediction with support vector regression and nearest neighbors. In: European Conference on Machine Learning, DARE Workshop (2013)

    Google Scholar 

  22. Treiber, N.A., Kramer, O.: Wind power prediction with cross-correlation weighted nearest neighbors. In: 28th International Conference on Informatics for Environmental Protection (2014)

    Google Scholar 

  23. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  24. Van der Walt, S., Colbert, S.C., Varoquaux, G.: The numpy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13(2), 22–30 (2011)

    Google Scholar 

  25. Wegley, H., Kosorok, M., Formica, W.: Subhourly wind forecasting techniques for wind turbine operations. Technical report, Pacific Northwest Lab., Richland, WA (USA) (1984)

    Google Scholar 

Download references

Acknowledgments

We thank the presidential chair of the University of Oldenburg, the EWE research institute NextEnergy, and the Ministry of Science and Culture of Lower Saxony for partly supporting this work. Further, we thank the US National Renewable Energy Laboratory (NREL) for providing the wind data set.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils André Treiber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Treiber, N.A., Heinermann, J., Kramer, O. (2016). Wind Power Prediction with Machine Learning. In: Lässig, J., Kersting, K., Morik, K. (eds) Computational Sustainability. Studies in Computational Intelligence, vol 645. Springer, Cham. https://doi.org/10.1007/978-3-319-31858-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31858-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31856-1

  • Online ISBN: 978-3-319-31858-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics