Skip to main content

Edough-Cap de Fer Polymetallic District, Northeast Algeria: I. The Late Miocene Paleogeothermal System of Aïn Barbar and Its Cu–Zn–Pb Vein Mineralization

  • Chapter
  • First Online:

Part of the book series: Mineral Resource Reviews ((MIRERE))

Abstract

In northeast Algeria, the internal Edough massif of the Alpine Maghrebide belt, is an inlier of basement rocks under a cover of Cretaceous (Kabylian) and Cenozoic (Numidian) flysch nappes. During the late Oligocene-early Miocene, the Edough massif was an Oligo-Miocene metamorphic core complex involving the basement rocks (Pan-African gneiss, marble, amphibolite) and its Paleozoic cover. In a short time interval from latest Burdigalian to early Langhian (ca. 17–15 Ma), felsic intrusive rocks were emplaced in the basement and its tectonic cover under progressively shallower conditions (granite to rhyolite) that define the Edough-Cap de Fer magmatic district. At Aïn Barbar, during intrusion of microgranites at ca. 16 Ma, a high-enthalpy, liquid-dominated geothermal system was active in the Cretaceous flysch reservoir, with Oligo-Miocene Numidian flysch serving as an impermeable cap. Temperatures as high as ca. 350–375 °C were attained in the deep parts of the Aïn Barbar paleogeothermal field, at a depth of ca. 1.3–1.5 km. Input of massive amounts of sodium resulted in the formation of metasomatic plagioclase-rich hornfels (Chaïba domain), whereas higher in the Cretaceous flysch aquifer, invasion of hot fluids (300–270 °C) was associated with hydrothermal metamorphism (quartz-chlorite, calcite-chlorite, wairakite-chlorite, and epidote domains). The source of these hot fluids was a basement of the Edough type, in which advection of heat was likely related to emplacement of a granite batholith at depth. Concomitant with the paleogeothermal circulations, fault activity created N170° E fracture zones that progressively channelled fluid flow, with related development of linear propylitically altered zones and precipitation of Zn–Pb–Cu sulphides at temperatures between 330 and 285 °C. At ca. 15 Ma, renewed magmatic activity (subvolcanic rhyolite dikes) was associated with a new and shallower (ca. 800 m depth) geothermal system, involving the convective circulation of surficial fluids (meteoric and possibly seawater) at temperatures between 300 and 250 °C. Epithermal quartz and sulphides were deposited in the same vein systems as in the previous mineralization stage, but remained uneconomic. However, concomitant formation of massive adularia during alteration of the Chaïba rhyolite produced an economic K-feldspar body mined for ceramics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmed-Saïd Y, Leake BE, Rogers G (1993) The petrology, geochemistry and petrogenesis of the Edough igneous rocks, Annaba, NE Algeria. J Afr Earth Sci 17:111–123

    Article  Google Scholar 

  • Aïssa DE (1996) Etude géologique, géochimique et métallogénique du massif de l’Edough (Annaba, NE Algérie). Unpubl. Thèse Doctorat Etat, USTHB, Alger, Algeria, 500 pp

    Google Scholar 

  • Aïssa DE, Cheilletz A, Gasquet D, Marignac C (1995) Alpine metamorphic core complexes and metallogenesis: the Edough case (NE Algeria). In: Pašava J, Kříbek B, Žák K (eds) Mineral deposits: from their origin to their environmental impacts, Proceed 3rd Biennial SGA Meeting. Prague, Balkema Rotterdam, pp 23–26

    Google Scholar 

  • Aïssa DE, Marignac C, Cheilletz A, Gasquet D (1998) Géologie et métallogénie sommaire du massif de l’Edough (NE Algérie). Mémoire Service Géologique de l’Algérie 9:7–55

    Google Scholar 

  • Bagdasarjan GP, Bajanik S, Vass D (1973) Age radiométrique du volcanisme néogène dans le Nord tunisien. Notes Serv Géol Tunisie 40:79–83

    Google Scholar 

  • Barton PB Jr (1978) Some ore textures involving sphalerite from the Furutobe mine, Akita Prefecture, Japan. Mining Geol 28:293–300

    Google Scholar 

  • Barton PB Jr, Bethke PM (1987) Chalcopyrite disease in sphalerite: pathology and epidemiology. Amer Mineral 72:451–467

    Google Scholar 

  • Batzle ML, Simmons G (1976) Microfractures in rocks from two geothermal areas. Earth Planet Sci Lett 30:71–93

    Article  Google Scholar 

  • Bellon H (1981) Chronologie radiométrique K-Ar des manifestations magmatiques autour de la Méditerranée occidentale entre 33 et 1 Ma. In: Wezel FC (ed) Sedimentary basins of Mediterranean margins. Technoprint, Bologne, pp 341–360

    Google Scholar 

  • Bird DK, Schiffman P, Elders WA, Williams AE, McDowell SD (1984) Calc-silicate mineralization in active geothermal systems. Econ Geol 79:671–695

    Article  Google Scholar 

  • Bouhlel S, Garnit H, Bejaoui J, Skaggs S (2013) Lead isotopes signatures of the MVT lead-zinc (± F) deposits across central-north Tunisia: evidence for the heterogeneity in uranium component of the underlying source rocks. In: Jonsson E et al. (eds), Mineral deposit research for a high-tech world, Proceedings of 12th Biennial SGA Meeting, Uppsala, Sweden, Geol Survey Sweden, v. 2, pp 612–615

    Google Scholar 

  • Bouillin J-P (1979) La transversale de Collo et El-Milia (Petite Kabylie): une région-clef pour l’interprétation alpine de la chaîne littorale d’Algérie. Mémoire Soc Geol France 57, 84 pp

    Google Scholar 

  • Bourdelle F, Parra T, Beyssa O, Chopin C, Vidal O (2013a) Clay minerals as geo-thermometer: a comparative study based on high spatial resolution analyses of illite and chlorite in Gulf Coast sandstones (Texas, U.S.A). Amer Mineral 98:914–926

    Article  Google Scholar 

  • Bourdelle F, Parra T, Chopin C, Beyssac O (2013b) A new chlorite geothermometer for diagenetic to low-grade conditions. Contrib Mineral Petrol 165:723–735

    Article  Google Scholar 

  • Browne PRL (1978) Hydrothermal alteration in active geothermal fields. Ann Rev Earth Planet Sci 6:229–250

    Article  Google Scholar 

  • Brunel M, Hammor D, Misseri M, Gleizes G, Bouleton J (1988) Cisaillements synmétamorphiques avec transport vers le Nord-Ouest dans le massif cristallin de l’Edough (Est Algérien). C R Acad Sci Paris 306 (II):1039–1045

    Google Scholar 

  • Caby R, Hammor D (1992) Le massif cristallin de l’Edough (Algérie): un “metamorphic core complex” d’âge Miocène dans les Maghrébides. C R Acad Sci Paris 314:829–835

    Google Scholar 

  • Cathelineau M (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner 23:471–485

    Article  Google Scholar 

  • Cathelineau M, Nieva D (1985) A chlorite solid solution geothermometer: the Los Azufres (Mexico) geothermal system. Contrib Mineral Petrol 91:235–244

    Article  Google Scholar 

  • Cathelineau M, Marignac C, Boiron MC, Gianelli G, Puxeddu M (1994) Evidence for Li-rich brines and early magmatic fluid-rock interaction in the Larderello geothermal system. Geochim Cosmochim Acta 58:1083–1099

    Google Scholar 

  • Cavaretta G, Gianelli G, Puxeddu M (1982) Formation of authigenic minerals and their use as indicators of the physicochemical parameters of the fluid in the Larderello-Travale geothermal field. Econ Geol 77:1071–1084

    Article  Google Scholar 

  • Charef A (1986) La nature et le rôle des phases fluids associées à la mineralisation Pb-Zn dans les formations carbonates et leurs consequences métallogéniques: étude des inclusions fluids et des isotopes (H, C, O, S, Pb) des gisements des Malines (France), Jebel Hallouf-Sidi Bou Aouane at Fedj-el-Adoum (Tunisie). Unpubl Thèse Doct Etat, Nancy, France, 291 pp

    Google Scholar 

  • Conrad ME, Petersen U, O’Neil JR (1992) Evolution of an Au-Ag-producing hydrothermal system: the Tayoltita mine, Durango, Mexico. Econ Geol 87:1451–1474

    Article  Google Scholar 

  • Czubek JA, Buniak M, Loskiewicz J, Bogacz J, Dabrowski J, Lenda A, Zorski T (1982) Statistical and geostatistical characteristics of some formations in the Carpathian flysch. Ann Soc Geol Pol 52:305–333

    Google Scholar 

  • de Caritat P, Hutcheon I, Walshe JL (1993) Chlorite geothermometry: a review. Clays Clay Minerals 41:219–239

    Article  Google Scholar 

  • Debon F, Le Fort P (1983) A chemical-mineralogical classification of common plutonic rocks and associations. Trans R Soc Edinburgh (Earth and Environ Sci) 73:135–149

    Article  Google Scholar 

  • Decrée S, Marignac C, Liégeois J-P, Yans J, Ben Abdallah R, Demaiffre D (2014) Miocene magmatic evolution in the Nefza district (northern Tunisia) and its relationship with the genesis of polymetallic mineralizations. Lithos 192–195:240–258

    Article  Google Scholar 

  • Dercourt J, Zonenshain LP, Ricou LE, Kazmin VG, Le Pichon X, Knipper AL, Grandjacquet C, Sbortshikov IM, Geyssant J, Lepvrier C, Pechersky DH, Boulin J, Sibuet J-C, Savostin LA, Sorokhtin O, Westphal W, Bazhenov ML, Lauer JP, Biju-Duval B (1986) Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the Lias. Tectonophys 123:241–315

    Article  Google Scholar 

  • Douvens N, Diamantopoulos P (1997) Weathering profiles in rock units of Pindos and Ionian flyschs, Greece, and their importance in geotechnical works. In: Marinos et al. (eds) Engineering geology and the Environment, Balkema, Rotterdam, pp 97–102

    Google Scholar 

  • Drummond SE, Ohmoto H (1985) Chemical evolution and mineral deposition in boiling hydrothermal systems. Econ Geol 80:126–147

    Article  Google Scholar 

  • Dubessy J, Derome D, Sausse J (2003) Numerical modelling of fluid mixing in the H2O-NaCl system: application to the North Carama U prospect (Australia). Chem Geol 194:25–39

    Google Scholar 

  • Durand-Delga M (1969) Mise au point sur la structure Nord-Est de la Berbérie. Bull Serv Carte Géol Algérie 39:89–131

    Google Scholar 

  • Durand-Delga M, Rossi P, Olivier P, Puglisi D (2000) Situation structurale et nature ophiolitique des roches basiques jurassiques associées aux flyschs maghrébins du Rif (Maroc) et de Sicile. C R Acad Sci Paris, Sci Terre Planètes/Earth Planet Sci 331:29–38

    Google Scholar 

  • Eldridge CS, Bourcier WL, Ohmoto H, Barnes HL (1988) Hydrothermal inoculation and incubation of the chalcopyrite disease in sphalerite. Econ Geol 83:972–989

    Google Scholar 

  • Fougnot J (1990) Le magmatisme néogène du littoral nord-constantinois. Unpubl, Thèse de Doctorat, INPL, Nancy, France 358 pp

    Google Scholar 

  • Fourcade S, Capdevila R, Ouabadi A, Matineau F (2001) The origin and geodynamic significance of the Alpine cordierite-bearing granitoids of northern Algeria: a combined petrological, mineralogical and isotopic O, H, Sr, Nd study. Lithos 57:187–216

    Article  Google Scholar 

  • Frizon de Lamotte D, Saint-Bezar B, Bracene R, Mercier E (2000) The two main steps of the Atlas building and geodynamics of the western Mediterranean. Tectonics 19:740–761

    Article  Google Scholar 

  • Frizon de Lamotte D, Michard A, Saddiqi O (2006) Quelques développements récents sur la géodynamique du Maghreb (Some recent developments on the Maghreb geodynamics). Comptes Rendus Géoscience 338:1–10

    Google Scholar 

  • Frost RF, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048

    Article  Google Scholar 

  • Glaçon J (1971) Les gîtes minéraux liés au magmatisme tertiaire en Algérie du Nord. Colloque E Raguin. Les roches plutoniques dans leurs rapports avec les gîtes minéraux, Masson, Paris, pp 214–224

    Google Scholar 

  • Heuze FE (1981) High-temperature mechanical, physical and thermal properties of granitic rocks—a review. Int J Rock Mechan Min Sci Geomech Abstr 20:3–10

    Article  Google Scholar 

  • Hilly J (1962) Etude géologique du massif de l’Edough et du Cap de Fer (Est Constantinois). Publ Serv Géol Algérie (nouv sér) 19, 408 pp

    Google Scholar 

  • Jemmali N, Souissi F, Villa IM, Vennemann T (2011) Ore genesis of Pb-Zn deposits in the nappe zone of northern Tunisia: constraints from Pb-S-C-O isotopic systems. Ore Geol Rev 40:41–53

    Article  Google Scholar 

  • Jemmali N, Souissi F, Carranza EJM, Vennemann T (2013a) Sulfur and lead isotopes of Guern Halfaya and Bou Grine deposits (Domes zone, northern Tunisia): implications for sources of metal and timing of mineralization. Ore Geol Rev 54:17–28

    Article  Google Scholar 

  • Jemmali N, Souissi F, Carranza EJM, Bouabdellah M (2013b) Lead and sulphur isotope constraints on the genesis of the polymetallic mineralization at Oued Maden, Jebel Hallouf and Fedj Hassene carbonate-hosted Pb-Zn (As-Cu-Hg-Sb) deposits, northern Tunisia. J Geochem Expl 132:6–14

    Article  Google Scholar 

  • Jolivet L, Faccenna C (2000) Mediterranean extension and the Africa-Eurasia collision. Tectonics 19:1095–1106

    Article  Google Scholar 

  • Lahondere JC, Feinberg H, Haq BU (1979) Datation des grès numidiens d’Algérie orientale: conséquences structurales. C R Acad Sci Paris 289 (D):383–386

    Google Scholar 

  • Laouar R, Boyce AJ, Ahmed-Saïd Y, Ouabadi A, Fallick AE, Toubal A (2002) Stable isotope study of the igneous, metamorphic and mineralized rocks of the Edough complex, Annaba, northeast Algeria. J Afr Earth Sci 35:271–283

    Article  Google Scholar 

  • Laouar R, Boyce AJ, Arafa M, Ouabadi A, Fallick AE (2005) Petrological, geochemical and stable isotope constraints on the genesis of the Miocene igneous rocks of Chetaibi and Cap de Fer (NE Algeria). J Afr Earth Sci 41:445–465

    Article  Google Scholar 

  • Lindgren W (1933) Mineral deposits, 4th edn. McGraw-Hill, New York 930 pp

    Google Scholar 

  • Linnen R, Cuney M (2005) Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization. In Linnen R, Samson IM (eds) Rare-element geochemistry and mineral deposits, Geological Association of Canada (GAC) Short Course Notes 17:45–67

    Google Scholar 

  • Lo HJ (1978) The stability of epistilbite and its bearing on the zeolite facies. Proc Geol Soc China (Formosa) 21:25–33

    Google Scholar 

  • Marignac C (1976) Mise en évidence des successions paragénétiques dans les principaux filons minéralisés du district filonien d’Aïn Barbar (Willaya d’Annaba, Algérie). Science de la Terre Nancy XX:333–401

    Google Scholar 

  • Marignac C (1985) Les minéralisations filoniennes d’Aïn Barbar (Algérie): un exemple d’hydrothermalisme lié à l’activité géothermique alpine en Afrique du Nord. Unpubl Thèse Doctorat Etat, INPL, Nancy, France, 2 vol, 1163 pp, 1 vol Annexes 176 pp

    Google Scholar 

  • Marignac C (1987) Composition des phases minérales et évolution des phases fluides: le cas des filons polymétalliques d’Aïn Barbar (Algérie). Bull Minéralogie 111:183–206

    Google Scholar 

  • Marignac C (1988a) P-T-X evolution of ore veins associated with paleogeothermal activity at Aïn Barbar (NE Constantinois, Algeria): reconstruction from fluid inclusion data. Bull Minéralogie 111:359–381

    Google Scholar 

  • Marignac C (1988b) A case of ore deposition associated with geothermal activity: the polymetallic ore veins of Aïn Barbar (NE Constantinois, Algeria). Mineral Petrol 39:107–127

    Article  Google Scholar 

  • Marignac C (1989) Sphalerite stars in chalcopyrite: are they always the result of an unmixing process? Miner Deposita 24:176–182

    Article  Google Scholar 

  • Marignac C, Zimmermann JL (1983) Ages K-Ar de l’évènement hydrothermal et des minéralisations associées dans le district minéralisé miocène d’Aïn Barbar (Est Constantinois). Miner Deposita 18:457–467

    Article  Google Scholar 

  • Marignac C, Aïssa DE, Cheilletz A, Gasquet D (2015) Edough-Cap de Fer polymetallic district, northeast Algeria: II. Metallogenic evolution of a late Miocene metamorphic core complex in the Alpine Maghrebide belt. In: Bouabdellah M, Slack JF (eds) Mineral deposits of North Africa: Springer, Berlin-Heidelberg

    Google Scholar 

  • Maury RC, Fourcade S, Coulon C, El Azzouzi M, Bellon H, Coutelle A, Ouabadi A, Semroud B, Megartsi M, Cotten J, Belanteur O, Louni-Hacini A, Piqué A, Capdevila R, Hernandez J, Réhault JP (2000) Post-collisional Neogene magmatism of teh Mediterranean Maghreb margin: a consequence of slab breakoff. C R Acad Sci Paris 331:159–173

    Google Scholar 

  • McDowell SD, Elders WA (1980) Authigenic layer silicates in borehole Elmore 1, Salton Sea geothermal field, California, U.S.A. Contrib Mineral Petrol 74:293–310

    Article  Google Scholar 

  • McKibben MA, Elders WA (1985) Fe-Zn-Cu-Pb mineralization in the Salton Sea geothermal system, Imperial Valley, California. Econ Geol 80:539–559

    Article  Google Scholar 

  • Michard A, Negro F, Saddiqi O, Bouybaouene ML, Chalouan A, Montigny R, Goffé B (2006) Pressure-temperature-time constraints on the Maghrebide mountain building: evidence from the Rif-Betic transect (Morocco, Spain), Algerian correlations, and geodynamic implications. Comptes Rendus Géoscience 338:92–114

    Google Scholar 

  • Michel J, Baumgartner L, Putlitz B, Schaltegger U, Ovtcharova M (2008) Incremental growth of the Patagonian Torres del Paine laccolith over 90 k.y. Geology 36:459–462

    Article  Google Scholar 

  • Moëlo Y, Makovicky E, Mozgova N et al (2008) Sulfosalt systematics: a review. Report of the sulfosalt sub-committee of the IMA Commission on Ore Mineralogy. Eur J Mineral 20:7–46

    Article  Google Scholar 

  • Nigretto G (1992) Age et origine des minéralisations plomb-zinc d’Aïn-Barbar en Algérie. Unpubl DEA Memoire, CRPG Nancy 45 pp

    Google Scholar 

  • Ohtani T, Nakano T, Nakashima Y, Muraoka H (2001) Three-dimensional shape analysis of miarolitic cavities and enclaves in the Kakkonda granite by X-ray computed tomography. J Struct Geol 23:1741–1751

    Article  Google Scholar 

  • Piqué A, Tricart P, Guiraud R, Laville E, Bouaziz S, Amrhar M, Ait Ouali R (2002) The Mesozoic-Cenozoic Atlas belt (North Africa): an overview. Geodinam Acta 15:185–208

    Google Scholar 

  • Riverin G, Hodgson CJ (1980) Wall-rock alteration at the Millenbach Cu-Zn mine, Noranda, Quebec. Econ Geol 75:424–444

    Article  Google Scholar 

  • Rowland JV, Symmons SF (2012) Hydrologic, magmatic, and tectonic controls on hydrothermal flow, Taupo volcanic zone, New Zealand: implications for the formation of epithermal veins. Econ Geol 107:427–457

    Article  Google Scholar 

  • Russell RD, Farquhar RM (1960) Lead isotopes in geology. Interscience Publishers, New York-London 241 pp

    Google Scholar 

  • Sami R, Soussi M, Kamel B, Lattrache Kmar BI, Stow D, Sami K, Mourad B (2010) Stratigraphy, sedimentology and structure of the Numidian flysch thrust belt in northern Tunisia. J Afr Earth Sci 57:109–126

    Article  Google Scholar 

  • Schiffman P, Elders WA, Williams AE, McDowell SD, Bird DK (1984) Active metasomatism in the Cerro Prieto geothermal system, Baja California, Mexico: a telescoped low-pressure, low-temperature metamorphic facies series. Geology 12:12–15

    Article  Google Scholar 

  • Secchi FA, Brotzu P, Callegari E (1991) The Arburese igneous complex (SW Sardinia, Italy)—an example of dominant igneous fractionation leading to peraluminous cordierite-bearing leucogranites as residual melts. Chem Geol 92:213–249

    Article  Google Scholar 

  • Simmons SF, Browne PRL (1997) Saline fluid inclusions in sphalerite from the Broadlands-Ohaaki geothermal system: a coincidental trapping of fluids being boiled towards dryness. Econ Geol 92:485–489

    Article  Google Scholar 

  • Simmons SF, Browne PRL (2000) Hydrothermal minerals and precious metals in the Broadlands-Ohaaki geothermal system: implications for understanding low-sulfidation epithermal environments. Econ Geol 95:971–999

    Google Scholar 

  • Skinner BJ, White DE, Rose HJ, Mays RE (1967) Sulfides associated with the Salton Sea geothermal brines. Econ Geol 62:316–330

    Article  Google Scholar 

  • SOFELD Spa (Société des feldspaths d’Algérie) (1999) Présentation du gisement de felsites de Aïn Barbar, Willaya Annaba., 13 pp

    Google Scholar 

  • Thomas MFH, Bodin S, Redfern J, Irving DHB (2010) A constrained African craton source for the Cenozoic Numidian flysch: implications for the palaeogeography of the western Mediterranean basin. Earth-Sci Rev 101:1–23

    Article  Google Scholar 

  • Touahri B (1987) Géochimie et métallogénie des minéralisations à plomb et zinc du nord de l’Algérie. Unpubl PhD Thesis, Pierre et Marie Curie Univ, Paris, France, 380 pp

    Google Scholar 

  • Vidal O, Parra T, Trotet A (2001) A thermodynamic model for Fe-Mg aluminous chlorite using data from phase equilibrium experiments and natural pelitic assemblages in the 100 °C to 600 °C, 1 to 25 kb range. Amer J Sci 301:557–592

    Article  Google Scholar 

  • Vila JM (1980) La chaîne alpine d’Algérie orientale et des confins algéro-tunisiens. Unpubl Thèse Doctorat Etat, Université Paris VI, Paris, France, 663 pp

    Google Scholar 

  • Vorsteen H-D, Schellschmidt R (2003) Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rocks. Phys Chem Earth 28:499–509

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Amer Mineral 95:185–187

    Article  Google Scholar 

  • Zang W, Fyfe WS (1995) Chloritization of the hydrothermally altered bedrock at the Igarapé Bahia gold deposit, Carajás, Brazil. Miner Deposita 30:30–38

    Article  Google Scholar 

  • Zeng Y, Liou JG (1982) Experimental investigation of yugawaralite-wairakite equilibrium. Amer Mineral 67:937–943

    Google Scholar 

Download references

Acknowledgments

J. Slack is warmly thanked for his careful editing work and improvement of the manuscript. M. Pichavant and S. Barrat cheerfully helped for thermodynamic calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Marignac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marignac, C., Aïssa, D.E., Deloule, E., Cheilletz, A., Gasquet, D. (2016). Edough-Cap de Fer Polymetallic District, Northeast Algeria: I. The Late Miocene Paleogeothermal System of Aïn Barbar and Its Cu–Zn–Pb Vein Mineralization. In: Bouabdellah, M., Slack, J. (eds) Mineral Deposits of North Africa. Mineral Resource Reviews. Springer, Cham. https://doi.org/10.1007/978-3-319-31733-5_9

Download citation

Publish with us

Policies and ethics