Skip to main content

In Vitro Modeling of Nervous System: Engineering of the Reflex Arc

  • Chapter
  • First Online:
  • 1777 Accesses

Abstract

Neural models are invaluable for understanding the physiology and pathology of the nervous system as well as for developing therapeutic strategies targeting relevant injury and diseases. New developments in the field of stem cells enable great feasibility and potential for generating in vitro models of the nervous system, especially human-based models to study diseases and for drug screening. The reflex arc has been a popular model system for studying neural regulation and circuit modulation. Numerous in vitro models of this system have been generated, among which modeling of the efferent portion of the reflex arc, the connection between motoneurons and skeletal muscles, or the neuromuscular junction (NMJ), has been the central focus. To a lesser extent, the afferent portion, or intrafusal fiber to sensory neuron segment, has also been studied as well as the sensory neuron to motoneuron connections. Furthermore, the integration of interdisciplinary technologies such as surface patterning, microelectrode arrays, and cantilever systems is driving biological NMJ systems more toward in vitro platforms for high content and high throughput capabilities which are suitable for drug screening. To better mimic the in vivo condition, inclusions of other components are also in progress, such as the blood–brain barrier, Bio-MEMs technologies and multi-organ-on-a-chip systems. The concurrent progress in integration of biology and engineering will accelerate the development of these in vitro nervous system models which have an increasing suitability for studying physiology and pathology of the human nervous system as well as for use in drug discovery research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Ach:

Acetyl choline

AchR:

Acetyl choline receptor

ASC:

Adult stem cells

ALS:

Amyotrophic lateral sclerosis

Bio-MEMs:

Biomedical or biological microelectromechanical systems

BBB:

Blood–brain barrier

BMECs:

Brain microvascular endothelial cells

CNS:

Central nervous system

CSF:

Cerebral spinal fluid

CMOS:

Complementary-metal-oxide-semiconductor

CFD:

Computational fluid dynamics

CMS:

Congenital myasthenic syndromes

DETA:

N-1(3-(trimethoxysilyl) propyl) diethylenetriamine

DRG:

Dorsal root ganglia

ESCs:

Embryonic stem cells

ECM:

Extracellular matrix

FTD:

Frontotemporal dementia

iPSC:

Induced pluripotent stem cells

LTP:

Long-term potentiation

MEA:

Microelectrode array

MNs:

Motoneurons

NMJ:

Neuromuscular junction

NVU:

Neurovascular unit

PDMS:

Polydimethylsiloxane

PEG:

Polyethylene glycol

PCB:

Printed circuit board

SAM:

Self-assembled monolayers

SKM:

Skeletal muscles

SMA:

Spinal muscular atrophy

TEER:

Trans-endothelial electrical resistance

References

  • Abbott, N.J., L. Ronnback, and E. Hansson. 2006. Astrocyte-Endothelial Interactions at the Blood-Brain Barrier. Nature Review Neuroscience 7(1): 41–53.

    Google Scholar 

  • Abranches, E., M. Silva, L. Pradier, H. Schulz, O. Hummel, D. Henrique, and E. Bekman. 2009. Neural Differentiation of Embryonic Stem Cells In Vitro: A Road Map to Neurogenesis in the Embryo. PloS One 4(7), e6286. doi:10.1371/journal.pone.0006286.

    Google Scholar 

  • Achyuta, A.K.H., A.J. Conway, R.B. Crouse, E.C. Bannister, R.N. Lee, C.P. Katnik, A.A. Behensky, J. Cuevas, and S.S. Sundaram. 2013. A Modular Approach to Create a Neurovascular Unit-On-a-Chip. Lab on a Chip 13: 542–553. doi:10.1039/c2lc41033h.

    Google Scholar 

  • Alcendor, D.J., F.E. Block Iii, D.E. Cliffel, J.S. Daniels, K.L.J. Ellacott, C.R. Goodwin, L.H. Hofmeister, D. Li, D.A. Markov, J.C. May, L.J. McCawley, B. McLaughlin, J.A. McLean, K.D. Niswender, V. Pensabene, K.T. Seale, S.D. Sherrod, H.-J. Sung, D.L. Tabb, D.J. Webb, and J.P. Wikswo. 2013. Neurovascular Unit on a Chip: Implications for Translational Applications. Stem Cell Research & Therapy 4(1): 1–5. doi:10.1186/scrt379.

    Google Scholar 

  • Alexander, A.G., V. Marfil, and C. Li. 2014. Use of C. Elegans as a Model to Study Alzheimer’s Disease and Other Neurodegenerative Diseases. Frontiers in Genetics 5: 279. doi:10.3389/fgene.2014.00279.

  • Aregueta-Robles, U.A., A.J. Woolley, L.A. Poole-Warren, N.H. Lovell, and R.A. Green. 2014. Organic Electrode Coatings for Next-Generation Neural Interfaces. Frontiers in Neuroengineering 7: 15. doi:10.3389/fneng.2014.00015.

  • Barata, D., C. van Blitterswijk, and P. Habibovic. 2015. High-Throughput Screening Approaches and Combinatorial Development of Biomaterials Using Microfluidics. Acta Biomaterialia doi:http://dx.doi.org/10.1016/j.actbio.2015.09.009.

    Google Scholar 

  • Berdondini, L., K. Imfeld, A. Maccione, M. Tedesco, S. Neukom, M. Koudelka-Hep, and S. Martinoia. 2009. Active Pixel Sensor Array for High Spatio-Temporal Resolution Electrophysiological Recordings from Single Cell to Large Scale Neuronal Networks. Lab on a Chip 9(18): 2644–2651. doi:10.1039/b907394a.

    Google Scholar 

  • Betley, J.N., S. Xu, Z.F.H. Cao, R. Gong, C.J. Magnus, Y. Yu, and S.M. Sternson. 2015. Neurons for Hunger and Thirst Transmit a Negative-Valence Teaching Signal. Nature 521(7551): 180–185. doi:10.1038/nature14416.

    Google Scholar 

  • Bhatia, S.N., and D.E. Ingber. 2014. Microfluidic Organs-on-Chips. Nature Biotechnology 32(8): 760–772. doi:10.1038/nbt.2989.

    Google Scholar 

  • Bieberich, E., and G.E. Anthony. 2004. Neuronal Differentiation and Synapse Formation of PC12 and Embryonic Stem Cells on Interdigitated Microelectrode Arrays: Contact Structures for Neuron-to-Electrode Signal Transmission (NEST). Biosensors & Bioelectronics 19(8): 923–931.

    Google Scholar 

  • Bilic, J., and J.C.I. Belmonte. 2012. Concise Review: Induced Pluripotent Stem Cells Versus Embryonic Stem Cells: Close Enough or Yet Too Far Apart? Stem Cells 30(1): 33–41. doi:10.1002/stem.700.

    Google Scholar 

  • Booth, R., and H. Kim. 2012. Characterization of a Microfluidic In Vitro Model of the Blood-Brain Barrier (μBBB). Lab on a Chip 12: 1784–1792. doi:10.1039/c2lc40094d.

    Google Scholar 

  • Branch, D.W., J.M. Corey, J.A. Weyhenmeyer, G.J. Brewer, B.C. Wheeler. 1998. Microstamp Patterns of Biomolecules for High-Resolution Neuronal Networks. Medical & Biological Engineering & Computing 36(1): 135–141. doi:10.1007/Bf02522871.

    Google Scholar 

  • Brennand, K.J., A. Simone, J. Jou, C. Gelboin-Burkhart, N. Tran, S. Sangar, Y. Li, Y. Mu, G. Chen, D. Yu, S. McCarthy, J. Sebat, and F.H. Gage. 2011. Modelling Schizophrenia Using Human Induced Pluripotent Stem Cells. Nature 473(7346): 221–225. doi:http://www.nature.com/nature/journal/v473/n7346/abs/10.1038-nature09915-unlocked.html#supplementary-information.

  • Brette, R., M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J.M. Bower, M. Diesmann, A. Morrison, P.H. Goodman, F.C. Harris, M. Zirpe, T. Natschläger, D. Pecevski, B. Ermentrout, M. Djurfeldt, A. Lansner, O. Rochel, T. Vieville, E. Muller, A.P. Davison, S. El Boustani, and A. Destexhe. 2007. Simulation of Networks of Spiking Neurons: A Review of Tools and Strategies. Journal of Computational Neuroscience 23(3): 349–398. doi:10.1007/s10827-007-0038-6.

    Article  MathSciNet  Google Scholar 

  • Brewer, G.J. 1995. Serum-Free B27/Neurobasal Medium Supports Differentiated Growth of Neurons from the Striatum, Substantia Nigra, Septum, Cerebral Cortex, Cerebellum, and Dentate Gyrus. Journal of Neuroscience Research 42(5): 674–683.

    Article  Google Scholar 

  • Brewer, G.J., M.D. Boehler, T.T. Jones, and B.C. Wheeler. 2008. NbActiv4 Medium Improvement to Neurobasal/B27 Increases Neuron Synapse Densities and Network Spike Rates on Multielectrode Arrays. Journal of Neuroscience Methods 170(2): 181–187.

    Article  Google Scholar 

  • Brokhman, I., L. Gamarnik-Ziegler, O. Pomp, M. Aharonowiz, B.E. Reubinoff, and R.S. Goldstein. 2008. Peripheral Sensory Neurons Differentiate from Neural Precursors Derived from Human Embryonic Stem Cells. Differentiation 76(2): 145–155.

    Article  Google Scholar 

  • Brown, J.A., V. Pensabene, D.A. Markov, V. Allwardt, M.D. Neely, M. Shi, C.M. Britt, O.S. Hoilett, Q. Yang, B.M. Brewer, P.C. Samson, L.J. McCawley, J.M. May, D.J. Webb, D. Li, A.B. Bowman, R.S. Reiserer, and J.P. Wikswo. 2015. Recreating Blood-Brain Barrier Physiology and Structure on Chip: A Novel Neurovascular Microfluidic Bioreactor. Biomicrofluidics 9(5): 054124. doi:http://dx.doi.org/10.1063/1.4934713.

    Google Scholar 

  • Brüggemann, D., B. Wolfrum, V. Maybeck, Y. Mourzina, M. Jansen, and A. Offenhäusser. 2011. Nanostructured Gold Microelectrodes for Extracellular Recording from Electrogenic Cells. Nanotechnology 22(26): 265104. doi:10.1088/0957-4484/22/26/265104.

    Article  Google Scholar 

  • Campenot, R.B. 1977. Local Control of Neurite Development by Nerve Growth Factor. Proceedings of the National Academy of Sciences of the United States of America 74(10): 4516–4519.

    Article  Google Scholar 

  • Catela, C., M.M. Shin, and J.S. Dasen. 2015. Assembly and Function of Spinal Circuits for Motor Control. Annual Review of Cell and Developmental Biology 31: 669–698.

    Article  Google Scholar 

  • Chaudhury, H., E. Raborn, L.C. Goldie, and K.K. Hirschi. 2012. Stem Cell-Derived Vascular Endothelial Cells and Their Potential Application in Regenerative Medicine. Cells, Tissues, Organs 195(1–2): 41–47. doi:10.1159/000331423.

    Article  Google Scholar 

  • Chen, Z., H. Lee, S.J. Henle, T.R. Cheever, S.C. Ekker, and J.R. Henley. 2013. Primary Neuron Culture for Nerve Growth and Axon Guidance Studies in Zebrafish. PloS One 8(3), e57539. doi:10.1371/journal.pone.0057539.

    Article  Google Scholar 

  • Cheung, C., and S. Sinha. 2011. Human Embryonic Stem Cell-Derived Vascular Smooth Muscle Cells in Therapeutic Neovascularisation. Journal of Molecular and Cellular Cardiology 51(5): 651–664. doi:10.1016/j.yjmcc.2011.07.014.

    Article  Google Scholar 

  • Chipman, P.H., Y. Zhang, and V.F. Rafuse. 2014. A Stem-Cell Based Bioassay to Critically Assess the Pathology of Dysfunctional Neuromuscular Junctions. PloS One 9(3), e91643. doi:10.1371/journal.pone.0091643.

    Article  Google Scholar 

  • Cho, S., A. Wood, and M.R. Bowlby. 2007. Brain Slices as Models for Neurodegenerative Disease and Screening Platforms to Identify Novel Therapeutics. Current Neuropharmacology 5(1): 19–33.

    Article  Google Scholar 

  • Choi, S.H., Y.H. Kim, M. Hebisch, C. Sliwinski, S. Lee, C. D’Avanzo, H. Chen, B. Hooli, C. Asselin, J. Muffat, J.B. Klee, C. Zhang, B.J. Wainger, M. Peitz, D.M. Kovacs, C.J. Woolf, S.L. Wagner, R.E. Tanzi, and D.Y. Kim. 2014. A Three-Dimensional Human Neural Cell Culture Model of Alzheimer’s Disease. Nature 515(7526): 274–278. doi:10.1038/nature13800; http://www.nature.com/nature/journal/v515/n7526/abs/nature13800.html#supplementary-information.

    Google Scholar 

  • Chou, C.-H., J.D. Sinden, P.-O. Couraud, and M. Modo. 2014. In Vitro Modeling of the Neurovascular Environment by Coculturing Adult Human Brain Endothelial Cells with Human Neural Stem Cells. PloS One 9(9), e106346. doi:10.1371/journal.pone.0106346.

    Article  Google Scholar 

  • Claverol-Tinture, E., M. Ghirardi, F. Fiumara, X. Rosell, and J. Cabestany. 2005. Multielectrode Arrays with Elastomeric Microstructured Overlays for Extracellular Recordings from Patterned Neurons. Journal of Neural Engineering 2(2): L1–L7.

    Article  Google Scholar 

  • Cooke, M.J., S.R. Phillips, D.S. Shah, D. Athey, J.H. Lakey, and S.A. Przyborski. 2008. Enhanced Cell Attachment Using a Novel Cell Culture Surface Presenting Functional Domains from Extracellular Matrix Proteins. Cytotechnology 56(2): 71–79. doi:10.1007/s10616-007-9119-7.

    Article  Google Scholar 

  • Corey, J.M., B.C. Wheeler, and G.J. Brewer. 1996. Micrometer Resolution Silane-Based Patterning of Hippocampal Neurons: Critical Variables in Photoresist and Laser Ablation Processes for Substrate Fabrication. IEEE Transactions on Biomedical Engineering 43(9): 944–955. doi:10.1109/10.532129.

    Article  Google Scholar 

  • Daniels, M.P., B.T. Lowe, S. Shah, J. Ma, S.J. Samuelsson, B. Lugo, T. Parakh, and C.S. Uhm. 2000. Rodent Nerve-Muscle Cell Culture System for Studies of Neuromuscular Junction Development: Refinements and Applications. Microscopy Research and Technique 49(1): 26–37.

    Article  Google Scholar 

  • Dankerl, M., M.V. Hauf, A. Lippert, L.H. Hess, S. Birner, I.D. Sharp, A. Mahmood, P. Mallet, J.-Y. Veuillen, M. Stutzmann, and J.A. Garrido. 2010. Graphene Solution-Gated Field-Effect Transistor Array for Sensing Applications. Advanced Functional Materials 20(18): 3117–3124. doi:10.1002/adfm.201000724.

    Article  Google Scholar 

  • Das, M., P. Molnar, H. Devaraj, M. Poeta, and J.J. Hickman. 2003. Electrophysiological and Morphological Characterization of Rat Embryonic Motoneurons in a Defined System. Biotechnology Progress 19(6): 1756–1761. doi:10.1021/bp034076l.

    Article  Google Scholar 

  • Das, M., N. Bhargava, C. Gregory, L. Riedel, P. Molnar, and J.J. Hickman. 2005. Adult Rat Spinal Cord Culture on an Organosilane Surface in a Novel Serum-Free Medium. In Vitro Cellular & Developmental Biology—Animal 41(10): 343–348. doi:10.1007/s11626-005-0006-2.

    Article  Google Scholar 

  • Das, M., J.W. Rumsey, C.A. Gregory, N. Bhargava, J.F. Kang, P. Molnar, L. Riedel, X. Guo, and J.J. Hickman. 2007. Embryonic Motoneuron-Skeletal Muscle Co-culture in a Defined System. Neuroscience 146(2): 481–488.

    Article  Google Scholar 

  • Das, M., J.W. Rumsey, N. Bhargava, M. Stancescu, and J.J. Hickman. 2010. A Defined Long-Term In Vitro Tissue Engineered Model of Neuromuscular Junctions. Biomaterials 31(18): 4880–4888. doi:10.1016/j.biomaterials.2010.02.055.

    Article  Google Scholar 

  • Davies, S.J., C.H. Shih, M. Noble, M. Mayer-Proschel, J.E. Davies, and C. Proschel. 2011. Transplantation of Specific Human Astrocytes Promotes Functional Recovery After Spinal Cord Injury. PloS One 6(3), e17328. doi:10.1371/journal.pone.0017328.

    Article  Google Scholar 

  • Davis, H., X. Guo, S. Lambert, M. Stancescu, and J.J. Hickman. 2012. Small Molecule Induction of Human Umbilical Stem Cells into MBP-Positive Oligodendrocytes in a Defined Three-Dimensional Environment. ACS Chemical Neuroscience 3(1): 31–39. doi:10.1021/cn200082q.

    Article  Google Scholar 

  • Davis, H., M. Gonzalez, M. Stancescu, R. Love, J.J. Hickman, and S. Lambert. 2014. A Phenotypic Culture System for the Molecular Analysis of CNS Myelination in the Spinal Cord. Biomaterials 35(31): 8840–8845. doi:http://dx.doi.org/10.1016/j.biomaterials.2014.07.007.

    Google Scholar 

  • Dawson, T.M., H.S. Ko, and V.L. Dawson. 2010. Genetic Animal Models of Parkinson’s Disease. Neuron 66(5): 646–661. doi:10.1016/j.neuron.2010.04.034.

    Article  Google Scholar 

  • Defranchi, E., E. Bonaccurso, M. Tedesco, M. Canato, E. Pavan, R. Raiteri, and C. Reggiani. 2005. Imaging and Elasticity Measurements of the Sarcolemma of Fully Differentiated Skeletal Muscle Fibres. Microscopy Research and Technique 67(1): 27–35. doi:10.1002/jemt.20177.

    Article  Google Scholar 

  • Demestre, M., M. Orth, K.J. Föhr, K. Achberger, A.C. Ludolph, S. Liebau, and T.M. Boeckers. 2015. Formation and Characterisation of Neuromuscular Junctions Between hiPSC Derived Motoneurons and Myotubes. Stem Cell Research 15(2): 328–336. doi:http://dx.doi.org/10.1016/j.scr.2015.07.005.

    Google Scholar 

  • Dimos, J.T., K.T. Rodolfa, K.K. Niakan, L.M. Weisenthal, H. Mitsumoto, W. Chung, G.F. Croft, G. Saphier, R. Leibel, R. Goland, H. Wichterle, C.E. Henderson, and K. Eggan. 2008. Induced Pluripotent Stem Cells Generated from Patients with ALS can be Differentiated into Motor Neurons. Science 321(5893): 1218–1221.

    Article  Google Scholar 

  • Doležal, V.R., V. Lisá, M.-F. Diebler, J. Kašparová, and S. Tuček. 2001. Differentiation of NG108-15 Cells Induced by the Combined Presence of dbcAMP and Dexamethasone Brings About the Expression of N and P/Q Types of Calcium Channels and the Inhibitory Influence of Muscarinic Receptors on Calcium Influx. Brain Research 910(1–2): 134–141. doi:http://dx.doi.org/10.1016/S0006-8993(01)02701-9.

    Google Scholar 

  • Dore-Duffy, P. 2008. Pericytes: Pluripotent Cells of the Blood Brain Barrier. Current Pharmaceutical Design 14(16): 1581–1593.

    Article  Google Scholar 

  • Dore-Duffy, P., A. Katychev, X. Wang, and E. Van Buren. 2006. CNS Microvascular Pericytes Exhibit Multipotential Stem Cell Activity. Journal of Cerebral Blood Flow & Metabolism 26(5): 613–624. doi:10.1038/sj.jcbfm.9600272.

    Article  Google Scholar 

  • Duffy, R.M., and A.W. Feinberg. 2014. Engineered Skeletal Muscle Tissue for Soft Robotics: Fabrication Strategies, Current Applications, and Future Challenges. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 6(2): 178–195. doi:10.1002/wnan.1254.

    Google Scholar 

  • Duhr, F., P. Déléris, F. Raynaud, M. Séveno, S. Morisset-Lopez, C. Mannoury la Cour, M.J. Millan, J. Bockaert, P. Marin, and S. Chaumont-Dubel. 2014. Cdk5 Induces Constitutive Activation of 5-HT6 Receptors to Promote Neurite Growth. Nature Chemical Biology 10(7): 590–597. doi:10.1038/nchembio.1547. http://www.nature.com/nchembio/journal/v10/n7/abs/nchembio.1547.html#supplementary-information.

    Google Scholar 

  • Dutton, E.K., C.S. Uhm, S.J. Samuelsson, A.E. Schaffner, S.C. Fitzgerald, and M.P. Daniels. 1995. Acetylcholine Receptor Aggregation at Nerve-Muscle Contacts in Mammalian Cultures: Induction by Ventral Spinal Cord Neurons is Specific to Axons. The Journal of Neuroscience 15(11): 7401–7416.

    Google Scholar 

  • Dwane, S., E. Durack, and P. Kiely. 2013. Optimising Parameters for the Differentiation of SH-SY5Y Cells to Study Cell Adhesion and Cell Migration. BMC Research Notes 6(1): 366.

    Article  Google Scholar 

  • Edwards, D., M. Stancescu, P. Molnar, and J.J. Hickman. 2013. Two Cell Circuits of Oriented Adult Hippocampal Neurons on Self-Assembled Monolayers for Use in the Study of Neuronal Communication in a Defined System. ACS Chemical Neuroscience 4(8): 1174–1182. doi:10.1021/cn300206k.

    Article  Google Scholar 

  • El-Ali, J., P.K. Sorger, and K.F. Jensen. 2006. Cells on Chips. Nature 442(7101): 403–411.

    Article  Google Scholar 

  • Emdad, L., S.L. D’Souza, H.P. Kothari, Z.A. Qadeer, and I.M. Germano. 2012. Efficient Differentiation of Human Embryonic and Induced Pluripotent Stem Cells into Functional Astrocytes. Stem Cells and Development 21(3): 404–410. doi:10.1089/scd.2010.0560.

    Article  Google Scholar 

  • Engel, A.G., K. Ohno, and S.M. Sine. 2003. Sleuthing Molecular Targets for Neurological Diseases at the Neuromuscular Junction. Nature Review Neuroscience 4(5): 339–352.

    Article  Google Scholar 

  • Esposti, F., M.G. Signorini, S.M. Potter, and S. Cerutti. 2009. Statistical Long-Term Correlations in Dissociated Cortical Neuron Recordings. IEEE Transactions on Neural Systems and Rehabilitation Engineering 17(4): 364–369. doi:10.1109/TNSRE.2009.2022832.

    Article  Google Scholar 

  • Falconnet, D., G. Csucs, H. Michelle Grandin, and M. Textor. 2006. Surface Engineering Approaches to Micropattern Surfaces for Cell-Based Assays. Biomaterials 27(16): 3044–3063. doi:http://dx.doi.org/10.1016/j.biomaterials.2005.12.024.

    Google Scholar 

  • Fernandez-Valle, C., R.P. Bunge, and M.B. Bunge. 1995. Schwann Cells Degrade Myelin and Proliferate in the Absence of Macrophages: Evidence from In Vitro Studies of Wallerian Degeneration. Journal of Neurocytology 24(9): 667–679. doi:10.1007/bf01179817.

    Article  Google Scholar 

  • Ferrea, E., A. Maccione, L. Medrihan, T. Nieus, D. Ghezzi, P. Baldelli, F. Benfenati, and L. Berdondini. 2012. Large-Scale, High-Resolution Electrophysiological Imaging of Field Potentials in Brain Slices with Microelectronic Multielectrode Arrays. Frontiers in Neural Circuits 6: 80. doi:10.3389/fncir.2012.00080.

    Article  Google Scholar 

  • Ferrell, N., R.R. Desai, A.J. Fleischman, S. Roy, H.D. Humes, and W.H. Fissell. 2010. A Microfluidic Bioreactor with Integrated Transepithelial Electrical Resistance (TEER) Measurement Electrodes for Evaluation of Renal Epithelial Cells. Biotechnology and Bioengineering 107(4): 707–716. doi:10.1002/bit.22835.

    Article  Google Scholar 

  • Fields, R.D., E.A. Neale, and P.G. Nelson. 1990. Effects of Patterned Electrical-Activity on Neurite Outgrowth from Mouse Sensory Neurons. The Journal of Neuroscience 10(9): 2950–2964.

    Google Scholar 

  • Fischbach, G.D. 1972. Synapse Formation Between Dissociated Nerve and Muscle Cells in Low Density Cell Cultures. Developmental Biology 28(2): 407–429.

    Article  Google Scholar 

  • Fischbach, G.D., and S.A. Cohen. 1973. The Distribution of Acetylcholine Sensitivity Over Uninnervated and Innervated Muscle Fibers Grown in Cell Culture. Developmental Biology 31(1): 147–162.

    Article  Google Scholar 

  • Focus on Computational and Systems Neuroscience. 2011. Nature Neuroscience 14(2): 121–121.

    Google Scholar 

  • Fortier, L.A. 2005. Stem Cells: Classifications, Controversies, and Clinical Applications. Veterinary Surgery 34(5): 415–423. doi:10.1111/j.1532-950X.2005.00063.x.

    Article  Google Scholar 

  • Frank, E., and G.D. Fischbach. 1979. Early Events in Neuromuscular Junction Formation In Vitro: Induction of Acetylcholine Receptor Clusters in the Postsynaptic Membrane and Morphology of Newly Formed Synapses. The Journal of Cell Biology 83(1): 143–158. doi:10.1083/jcb.83.1.143.

    Article  Google Scholar 

  • Franke, F., D. Jäckel, J. Dragas, J. Müller, M. Radivojevic, D. Bakkum, and A. Hierlemann. 2012. High-Density Microelectrode Array Recordings and Real-Time Spike Sorting for Closed-Loop Experiments: An Emerging Technology to Study Neural Plasticity. Frontiers in Neural Circuits 6: 105. doi:10.3389/fncir.2012.00105.

    Article  Google Scholar 

  • Frey, U., U. Egert, F. Heer, S. Hafizovic, and A. Hierlemann. 2009. Microelectronic System for High-Resolution Mapping of Extracellular Electric Fields Applied to Brain Slices. Biosensors & Bioelectronics 24(7): 2191–2198. doi:10.1016/j.bios.2008.11.028.

    Article  Google Scholar 

  • Fromherz, P., A. Offenhäusser, T. Vetter, and J. Weis. 1991. A Neuron-Silicon Junction: A Retzius Cell of the Leech on an Insulated-Gate Field-Effect Transistor. Science 252(5010): 1290–1293.

    Article  Google Scholar 

  • Gajsek, N., M. Jevsek, T. Mars, K. Mis, S. Pirkmajer, J. Brecelj, and Z. Grubic. 2008. Synaptogenetic Mechanisms Controlling Postsynaptic Differentiation of the Neuromuscular Junction are Nerve-Dependent in Human and Nerve-Independent in Mouse C2C12 Muscle Cultures. Chemico-Biological Interactions 175(1–3): 50–57.

    Article  Google Scholar 

  • Goldman-Rakic, P.S. 1988. Topography of Cognition: Parallel Distributed Networks in Primate Association Cortex. Annual Review of Neuroscience 11: 137–156.

    Article  Google Scholar 

  • Gould, T.W., R.R. Buss, S. Vinsant, D. Prevette, W. Sun, C.M. Knudson, C.E. Milligan, and R.W. Oppenheim. 2006. Complete Dissociation of Motor Neuron Death from Motor Dysfunction by Bax Deletion in a Mouse Model of ALS. The Journal of Neuroscience 26(34): 8774–8786. doi:10.1523/jneurosci.2315-06.2006.

    Article  Google Scholar 

  • Goulding, M. 2009. Circuits Controlling Vertebrate Locomotion: Moving in a New Direction. Nature Review Neuroscience 10(7): 507–518.

    Article  MathSciNet  Google Scholar 

  • Gross, G.W., W.Y. Wen, and J.W. Lin. 1985. Transparent Indium-Tin Oxide Electrode Patterns for Extracellular, Multisite Recording in Neuronal Cultures. Journal of Neuroscience Methods 15(3): 243–252.

    Article  Google Scholar 

  • Guettier-Sigrist, S., G. Coupin, J.M. Warter, and P. Poindron. 2000. Cell Types Required to Efficiently Innervate Human Muscle Cells In Vitro. Experimental Cell Research 259(1): 204–212. doi:10.1006/excr.2000.4968.

    Article  Google Scholar 

  • Guo, X., K. Johe, P. Molnar, H. Davis, and J. Hickman. 2010a. Characterization of a Human Fetal Spinal Cord Stem Cell Line, NSI-566RSC, and Its Induction to Functional Motoneurons. Journal of Tissue Engineering and Regenerative Medicine 4(3): 181–193. doi:10.1002/term.223.

    Article  Google Scholar 

  • Guo, X., M. Das, J. Rumsey, M. Gonzalez, M. Stancescu, and J. Hickman. 2010b. Neuromuscular Junction Formation Between Human Stem-Cell-Derived Motoneurons and Rat Skeletal Muscle in a Defined System. Tissue Engineering. Part C, Methods 16(6): 1347–1355. doi:10.1089/ten.TEC.2010.0040.

    Article  Google Scholar 

  • Guo, X., M. Gonzalez, M. Stancescu, H.H. Vandenburgh, and J.J. Hickman. 2011. Neuromuscular Junction Formation Between Human Stem Cell-Derived Motoneurons and Human Skeletal Muscle in a Defined System. Biomaterials 32(36): 9602–9611. doi:10.1016/j.biomaterials.2011.09.014.

    Article  Google Scholar 

  • Guo, X., J.E. Ayala, M. Gonzalez, M. Stancescu, S. Lambert, and J.J. Hickman. 2012. Tissue Engineering the Monosynaptic Circuit of the Stretch Reflex Arc with Co-culture of Embryonic Motoneurons and Proprioceptive Sensory Neurons. Biomaterials 33(23): 5723–5731. doi:http://dx.doi.org/10.1016/j.biomaterials.2012.04.042.

    Google Scholar 

  • Guo, X., S. Spradling, M. Stancescu, S. Lambert, and J.J. Hickman. 2013. Derivation of Sensory Neurons and Neural Crest Stem Cells from Human Neural Progenitor hNP1. Biomaterials 34(18): 4418–4427. doi:http://dx.doi.org/10.1016/j.biomaterials.2013.02.061.

    Google Scholar 

  • Hai, A., and M.E. Spira. 2012. On-Chip Electroporation, Membrane Repair Dynamics and Transient In-Cell Recordings by Arrays of Gold Mushroom-Shaped Microelectrodes. Lab on a Chip 12(16): 2865–2873. doi:10.1039/c2lc40091j.

    Article  Google Scholar 

  • Halevy, T., and A. Urbach. 2014. Comparing ESC and iPSC-Based Models for Human Genetic Disorders. Journal of Clinical Medicine 3(4): 1146–1162.

    Article  Google Scholar 

  • Halldorsson, S., E. Lucumi, R. Gómez-Sjöberg, and R.M.T. Fleming. 2015. Advantages and Challenges of Microfluidic Cell Culture in Polydimethylsiloxane Devices. Biosensors and Bioelectronics 63: 218–231. doi:http://dx.doi.org/10.1016/j.bios.2014.07.029.

    Google Scholar 

  • Harink, B., S. Le Gac, R. Truckenmuller, C. van Blitterswijk, and P. Habibovic. 2013. Regeneration-on-a-Chip? The Perspectives on Use of Microfluidics in Regenerative Medicine. Lab on a Chip 13(18): 3512–3528. doi:10.1039/C3LC50293G.

    Article  Google Scholar 

  • Harper, J.M., C. Krishnan, J.S. Darman, D.M. Deshpande, S. Peck, I. Shats, S. Backovic, J.D. Rothstein, and D.A. Kerr. 2004. Axonal Growth of Embryonic Stem Cell-Derived Motoneurons In Vitro and in Motoneuron-Injured Adult Rats. Proceedings of the National Academy of Sciences of the United States of America 101(18): 7123–7128. doi:10.1073/pnas.0401103101.

    Article  Google Scholar 

  • Heer, F., W. Franks, A. Blau, S. Taschini, C. Ziegler, A. Hierlemann, and H. Baltes. 2004. CMOS Microelectrode Array for the Monitoring of Electrogenic Cells. Biosensors & Bioelectronics 20(2): 358–366. doi:10.1016/j.bios.2004.02.006.

    Article  Google Scholar 

  • Helmke, B.P., and A.R. Minerick. 2006. Designing a Nano-Interface in a Microfluidic Chip to Probe Living Cells: Challenges and Perspectives. Proceedings of the National Academy of Sciences of the United States of America 103(17): 6419–6424. doi:10.1073/pnas.0507304103.

    Article  Google Scholar 

  • Hickman, J.J., S.K. Bhatia, J.N. Quong, P. Shoen, D.A. Stenger, C.J. Pike, and C.W. Cotman. 1994. Rational Pattern Design for In Vitro Cellular Networks Using Surface Photochemistry. Journal of Vacuum Science & Technology A 12(3): 607–616. doi:http://dx.doi.org/10.1116/1.578844.

    Google Scholar 

  • Hollenbeck, P.J., and J.R. Bamburg. 2003. Comparing the Properties of Neuronal Culture Systems: A Shopping Guide for the Cell Biologist. Methods in Cell Biology 71: 1–16.

    Article  Google Scholar 

  • Hopkins, A.M., E. DeSimone, K. Chwalek, and D.L. Kaplan. 2015. 3D In Vitro Modeling of the Central Nervous System. Progress in Neurobiology 125: 1–25. doi:http://dx.doi.org/10.1016/j.pneurobio.2014.11.003.

    Google Scholar 

  • Hu, B.-Y., J.P. Weick, J. Yu, L.-X. Ma, X.-Q. Zhang, J.A. Thomson, and S.-C. Zhang. 2010. Neural Differentiation of Human Induced Pluripotent Stem Cells Follows Developmental Principles But with Variable Potency. Proceedings of the National Academy of Sciences of the United States of America 107(9): 4335–4340. doi:10.1073/pnas.0910012107.

    Article  Google Scholar 

  • Hughes, B.W., L.L. Kusner, and H.J. Kaminski. 2006. Molecular Architecture of the Neuromuscular Junction. Muscle & Nerve 33(4): 445–461.

    Article  Google Scholar 

  • Humpel, C. 2015. Organotypic Brain Slice Cultures: A Review. Neuroscience 305: 86–98. doi:http://dx.doi.org/10.1016/j.neuroscience.2015.07.086.

    Google Scholar 

  • Hunsberger, J.G., A.G. Efthymiou, N. Malik, M. Behl, I.L. Mead, X. Zeng, A. Simeonov, and M. Rao. 2015. Induced Pluripotent Stem Cell Models to Enable In Vitro Models for Screening in the Central Nervous System. Stem Cells and Development 24(16): 1852–1864. doi:10.1089/scd.2014.0531.

    Article  Google Scholar 

  • Hutzler, M., A. Lambacher, B. Eversmann, M. Jenkner, R. Thewes, and P. Fromherz. 2006. High-Resolution Multitransistor Array Recording of Electrical Field Potentials in Cultured Brain Slices. Journal of Neurophysiology 96(3): 1638–1645. doi:10.1152/jn.00347.2006.

    Article  Google Scholar 

  • Huys, R., D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle. 2012. Single-Cell Recording and Stimulation with a 16k Micro-Nail Electrode Array Integrated on a 0.18 μm CMOS Chip. Lab on a Chip 12(7): 1274–1280. doi:10.1039/c2lc21037a.

    Article  Google Scholar 

  • Israel, M.A., S.H. Yuan, C. Bardy, S.M. Reyna, Y. Mu, C. Herrera, M.P. Hefferan, S. Van Gorp, K.L. Nazor, F.S. Boscolo, C.T. Carson, L.C. Laurent, M. Marsala, F.H. Gage, A.M. Remes, E.H. Koo, and L.S.B. Goldstein. 2012. Probing Sporadic and Familial Alzheimer’s Disease Using Induced Pluripotent Stem Cells. Nature 482(7384): 216–220. doi:http://www.nature.com/nature/journal/v482/n7384/abs/nature10821.html#supplementary-information.

  • Ito, Y. 1999. Surface Micropatterning to Regulate Cell Functions. Biomaterials 20(23–24): 2333–2342. doi:http://dx.doi.org/10.1016/S0142-9612(99)00162-3.

    Google Scholar 

  • Jacobson, C., D. Duggan, and G. Fischbach. 2004. Neuregulin Induces the Expression of Transcription Factors and Myosin Heavy Chains Typical of Muscle Spindles in Cultured Human Muscle. Proceedings of the National Academy of Sciences of the United States of America 101(33): 12218–12223. doi:10.1073/pnas.0404240101.

    Article  Google Scholar 

  • Johnson, M.A., J.P. Weick, R.A. Pearce, and S.-C. Zhang. 2007. Functional Neural Development from Human Embryonic Stem Cells: Accelerated Synaptic Activity Via Astrocyte Coculture. The Journal of Neuroscience 27(12): 3069–3077. doi:10.1523/jneurosci.4562-06.2007.

    Article  Google Scholar 

  • Juopperi, T.A., W.R. Kim, C.-H. Chiang, H. Yu, R.L. Margolis, C.A. Ross, Ming G-l, and H. Song. 2012. Astrocytes Generated from Patient Induced Pluripotent Stem Cells Recapitulate Features of Huntington’s Disease Patient Cells. Molecular Brain 5(1): 1–14. doi:10.1186/1756-6606-5-17.

    Article  Google Scholar 

  • Kaneko, A., and Y. Sankai. 2014. Long-Term Culture of Rat Hippocampal Neurons at Low Density in Serum-Free Medium: Combination of the Sandwich Culture Technique with the Three-Dimensional Nanofibrous Hydrogel PuraMatrix. PloS One 9(7), e102703.

    Article  Google Scholar 

  • Karra, D., and R. Dahm. 2010. Transfection Techniques for Neuronal Cells. The Journal of Neuroscience 30(18): 6171–6177. doi:10.1523/jneurosci.0183-10.2010.

    Article  Google Scholar 

  • Kawato, M. 1999. Internal Models for Motor Control and Trajectory Planning. Current Opinion in Neurobiology 9(6): 718–727.

    Article  Google Scholar 

  • Kim, J. 2002. Dopamine Neurons Derived from Embryonic Stem Cells Function in an Animal Model of Parkinson’s Disease. Nature 418: 50–56.

    Article  Google Scholar 

  • Kim, D.-S., P.J. Ross, K. Zaslavsky, and J. Ellis. 2014. Optimizing Neuronal Differentiation from Induced Pluripotent Stem Cells to Model ASD. Frontiers in Cellular Neuroscience 8: 109. doi:10.3389/fncel.2014.00109.

  • Kim, Y.H., S.H. Choi, C. D’Avanzo, M. Hebisch, C. Sliwinski, E. Bylykbashi, K.J. Washicosky, J.B. Klee, O. Brustle, R.E. Tanzi, and D.Y. Kim. 2015. A 3D Human Neural Cell Culture System for Modeling Alzheimer’s Disease. Nature Protocols 10(7): 985–1006. doi:10.1038/nprot.2015.065. http://www.nature.com/nprot/journal/v10/n7/abs/nprot.2015.065.html#supplementary-information.

    Article  Google Scholar 

  • Kleinfeld, D., K. Kahler, and P. Hockberger. 1988. Controlled Outgrowth of Dissociated Neurons on Patterned Substrates. The Journal of Neuroscience 8(11): 4098–4120.

    Google Scholar 

  • Klitzman, R. 2010. The Use of Eggs and Embryos in Stem Cell Research. Seminars in Reproductive Medicine 28(4): 336–344. doi:10.1055/s-0030-1255182.

    Article  Google Scholar 

  • Kobayashi, T., V. Askanas, and W.K. Engel. 1987. Human Muscle Cultured in Monolayer and Cocultured with Fetal Rat Spinal Cord: Importance of Dorsal Root Ganglia for Achieving Successful Functional Innervation. The Journal of Neuroscience 7(10): 3131–3141.

    Google Scholar 

  • Leclair, A.M., S.S.G. Ferguson, and F. Lagugne-Labarthet. 2011. Surface Patterning Using Plasma-Deposited Fluorocarbon Thin Films for Single-Cell Positioning and Neural Circuit Arrangement. Biomaterials 32(5): 1351–1360. doi:10.1016/j.biomaterials.2010.10.051.

    Article  Google Scholar 

  • Lee, S., and E.J. Huang. 2015. Modeling ALS and FTD with iPSC-Derived Neurons. Brain Research doi:http://dx.doi.org/10.1016/j.brainres.2015.10.003.

    Google Scholar 

  • Levy, N. 2012. The Use of Animal as Models: Ethical Considerations. International Journal of Stroke 7(5): 440–442. doi:10.1111/j.1747-4949.2012.00772.x.

    Article  Google Scholar 

  • Li, X.-J., Z.-W. Du, E.D. Zarnowska, et al. 2005. Specification of Motoneurons from Human Embryonic Stem Cells. Nature Biotechnology 23(2): 215–221.

    Article  Google Scholar 

  • Li, X.J., B.Y. Hu, S.A. Jones, Y.S. Zhang, T. LaVaute, Z.W. Du, and S.C. Zhang. 2008. Directed Differentiation of Ventral Spinal Progenitors and Motor Neurons from Human Embryonic Stem Cells by Small Molecules. Stem Cells 26(4): 886–893. doi:10.1634/stemcells.2007-0620.

    Google Scholar 

  • Li, Y., G. Huang, X. Zhang, L. Wang, Y. Du, T.J. Lu, and F. Xu. 2014. Engineering Cell Alignment In Vitro. Biotechnology Advances 32(2): 347–365. doi:http://dx.doi.org/10.1016/j.biotechadv.2013.11.007.

    Google Scholar 

  • Li, Y.T., S.H. Zhang, X.Y. Wang, X.W. Zhang, A.I. Oleinick, I. Svir, C. Amatore, and W.H. Huang. 2015. Real-Time Monitoring of Discrete Synaptic Release Events and Excitatory Potentials Within Self-Reconstructed Neuromuscular Junctions. Angewandte Chemie (International ed in English) 54(32): 9313–9318. doi:10.1002/anie.201503801.

    Article  Google Scholar 

  • Liou, J.-C., and Y.-C. Wu. 2015. Studies on the Synaptic Facilitation Effect of Hydrogen Peroxide in the Developing Neuromuscular Synapse. The FASEB Journal 29 (1 Supplement).

    Google Scholar 

  • Lippmann, E.S., S.M. Azarin, J.E. Kay, R.A. Nessler, H.K. Wilson, A. Al-Ahmad, S.P. Palecek, and E.V. Shusta. 2012. Derivation of Blood-Brain Barrier Endothelial Cells from Human Pluripotent Stem Cells. Nature Biotechnology 30(8): 783–791. http://www.nature.com/nbt/journal/v30/n8/abs/nbt.2247.html#supplementary-information.

    Google Scholar 

  • Lippmann, E.S., A. Al-Ahmad, S.M. Azarin, S.P. Palecek, and E.V. Shusta. 2014. A Retinoic Acid-Enhanced, Multicellular Human Blood-Brain Barrier Model Derived from Stem Cell Sources. Scientific Reports 4: 4160. doi:10.1038/srep04160. http://www.nature.com/articles/srep04160#supplementary-information.

    Article  Google Scholar 

  • Lisman, J. 2015. The Challenge of Understanding the Brain: Where We Stand in 2015. Neuron 86(4): 864–882. doi:10.1016/j.neuron.2015.03.032.

    Article  Google Scholar 

  • Liu, Q.Y., M. Coulombe, J. Dumm, K.M. Shaffer, A.E. Schaffner, J.L. Barker, J.J. Pancrazio, D.A. Stenger, and W. Ma. 2000. Synaptic Connectivity in Hippocampal Neuronal Networks Cultured on Micropatterned Surfaces. Brain Research. Developmental Brain Research 120(2): 223–231.

    Article  Google Scholar 

  • Liu, M.-G., X.-F. Chen, T. He, Z. Li, and J. Chen. 2012. Use of Multi-Electrode Array Recordings in Studies of Network Synaptic Plasticity in Both Time and Space. Neuroscience Bulletin 28(4): 409–422. doi:10.1007/s12264-012-1251-5.

    Article  Google Scholar 

  • Liu, M.-G., S.J. Kang, T.-Y. Shi, K. Koga, M.-M. Zhang, G.L. Collingridge, B.-K. Kaang, and M. Zhuo. 2013. Long-Term Potentiation of Synaptic Transmission in the Adult Mouse Insular Cortex: Multielectrode Array Recordings. Journal of Neurophysiology 110(2): 505–521. doi:10.1152/jn.01104.2012.

    Article  Google Scholar 

  • Livi, P., M. Wipf, A. Tarasov, R. Stoop, K. Bedner, J. Rothe, Y. Chen, A. Stettler, C. Schonenberger, and A. Hierlemann. 2013. Silicon Nanowire Ion-Sensitive Field-Effect Transistor Array Integrated with a CMOS-Based Readout Chip. In Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013 Transducers & Eurosensors XXVII: The 17th International Conference on, 16–20 June 2013. pp 1751–1754. doi:10.1109/Transducers.2013.6627126.

  • Lo, B., and L. Parham. 2009. Ethical Issues in Stem Cell Research. Endocrine Reviews 30(3): 204–213. doi:10.1210/er.2008-0031.

    Article  Google Scholar 

  • Long, C., C. Finch, M. Esch, W. Anderson, M. Shuler, and J. Hickman. 2012. Design Optimization of Liquid-Phase Flow Patterns for Microfabricated Lung on a Chip. Annals of Biomedical Engineering 40(6): 1255–1267. doi:10.1007/s10439-012-0513-8.

    Article  Google Scholar 

  • Lu, B., A.J. Czernik, S. Popov, T. Wang, M.M. Poo, and P. Greengard. 1996. Expression of Synapsin i Correlates with Maturation of the Neuromuscular Synapse. Neuroscience 74(4): 1087–1097.

    Article  Google Scholar 

  • Maclean, F.L., A.L. Rodriguez, C. Parish, R.J. Williams, and D.R. Nisbet. 2016. Integrating Biomaterials and Stem Cells for Neural Regeneration. Stem Cells and Development 25(3): 214–226. doi:10.1089/scd.2015.0314.

    Article  Google Scholar 

  • Malik, N., and M.S. Rao. 2013. A Review of the Methods for Human iPSC Derivation. Methods in Molecular Biology (Clifton, NJ) 997: 23–33. doi:10.1007/978-1-62703-348-0_3.

    Google Scholar 

  • Markaki, M., and N. Tavernarakis. 2010. Modeling Human Diseases in Caenorhabditis Elegans. Biotechnology Journal 5(12): 1261–1276.

    Article  Google Scholar 

  • Marquardt, L.M., and S.E. Sakiyama-Elbert. 2013. Engineering Peripheral Nerve Repair. Current Opinion in Biotechnology 24(5): 887–892. doi:http://dx.doi.org/10.1016/j.copbio.2013.05.006.

    Google Scholar 

  • Mars, T., K.J. Yu, X.-M. Tang, A.F. Miranda, Z. Grubic, F. Cambi, and M.P. King. 2001. Differentiation of Glial Cells and Motor Neurons During the Formation of Neuromuscular Junctions in Cocultures of Rat Spinal Cord Explant and Human Muscle. Journal of Comparative Neurology 438(2): 239–251.

    Article  Google Scholar 

  • Mars, T., M.P. King, A.F. Miranda, W.F. Walker, K. Mis, and Z. Grubic. 2003. Functional Innervation of Cultured Human Skeletal Muscle Proceeds by Two Modes with Regard to Agrin Effects. Neuroscience 118(1): 87–97.

    Article  Google Scholar 

  • Maschmeyer, I., A.K. Lorenz, K. Schimek, T. Hasenberg, A.P. Ramme, J. Hubner, M. Lindner, C. Drewell, S. Bauer, A. Thomas, N.S. Sambo, F. Sonntag, R. Lauster, and U. Marx. 2015. A Four-Organ-Chip for Interconnected Long-Term Co-culture of Human Intestine, Liver, Skin and Kidney Equivalents. Lab on a Chip 15(12): 2688–2699. doi:10.1039/c5lc00392j.

    Article  Google Scholar 

  • Matsuda, T., T. Sugawara, and K. Inoue. 1992. Two-Dimensional Cell Manipulation Technology. An Artificial Neural Circuit Based on Surface Microphotoprocessing. American Society for Artificial Internal Organs: 1992 38(3): M243–M247.

    Article  Google Scholar 

  • McConnell, E.R., M.A. McClain, J. Ross, W.R. Lefew, and T.J. Shafer. 2012. Evaluation of Multi-Well Microelectrode Arrays for Neurotoxicity Screening Using a Chemical Training Set. Neurotoxicology 33(5): 1048–1057. doi:10.1016/j.neuro.2012.05.001.

    Article  Google Scholar 

  • McGoldrick, P., P.I. Joyce, E.M.C. Fisher, and L. Greensmith. 2013. Rodent Models of Amyotrophic Lateral Sclerosis. Biochimica et Biophysica Acta 1832(9): 1421–1436.

    Article  Google Scholar 

  • Merkle Florian, T., and K. Eggan. 2013. Modeling Human Disease with Pluripotent Stem Cells: From Genome Association to Function. Cell Stem Cell 12(6): 656–668. doi:10.1016/j.stem.2013.05.016.

    Google Scholar 

  • Millet, L.J., and M.U. Gillette. 2012a. Over a Century of Neuron Culture: From the Hanging Drop to Microfluidic Devices. The Yale Journal of Biology and Medicine 85(4): 501–521.

    Google Scholar 

  • Millet, L.J., and M.U. Gillette. 2012b. New Perspectives on Neuronal Development Via Microfluidic Environments. Trends in Neurosciences 35(12): 752–761.

    Article  Google Scholar 

  • Mimee, A., P.M. Smith, A.V. Ferguson. 2013. Circumventricular Organs: Targets for Integration of Circulating Fluid and Energy Balance Signals? Physiology Behavior 121: 96–102. doi:http://dx.doi.org/10.1016/j.physbeh.2013.02.012.

    Google Scholar 

  • Molnar, P., J.F. Kang, N. Bhargava, M. Das, and J.J. Hickman. 2007a. Synaptic Connectivity in Engineered Neuronal Networks. Patch Clamp Methods and Protocols. Methods in Molecular Biology Series 403: 165–173. doi:10.1007/978-1-59745-529-9_10.

    Article  Google Scholar 

  • Molnar, P., W. Wang, A. Natarajan, J.W. Rumsey, and J.J. Hickman. 2007b. Photolithographic Patterning of C2C12 Myotubes Using Vitronectin as Growth Substrate in Serum-Free Medium. Biotechnology Progress 23(1): 265–268. doi:10.1021/bp060302q.

    Article  Google Scholar 

  • Motlagh, B.G. 2014. High-Density 3D Pyramid-Shaped Microelectrode Arrays for Brain-Machine Interface Applications. In Biomedical Circuits and Systems Conference (BioCAS), 2014 IEEE. pp 364–367. doi:10.1109/BioCAS.2014.6981738.

  • Muoio, V., P.B. Persson, and M.M. Sendeski. 2014. The Neurovascular Unit—Concept Review. Acta Physiologica (Oxford, England) 210(4): 790–798. doi:10.1111/apha.12250.

    Article  Google Scholar 

  • Naik, P., and L. Cucullo. 2012. In Vitro Blood–Brain Barrier Models: Current and Perspective Technologies. Journal of Pharmaceutical Sciences 101(4): 1337–1354. doi:10.1002/jps.23022.

    Article  Google Scholar 

  • Nam, Y., and B.C. Wheeler. 2011. In Vitro Microelectrode Array Technology and Neural Recordings. Critical Reviews in Biomedical Engineering 39(1): 45–61. doi:10.1615/CritRevBiomedEng.v39.i1.40.

    Article  Google Scholar 

  • Nat, R. 2011. Cortical Network from Human Embryonic Stem Cells. Journal of Cellular and Molecular Medicine 15(6): 1429–1431. doi:10.1111/j.1582-4934.2011.01309.x.

    Article  Google Scholar 

  • Natarajan, A., T.B. DeMarse, P. Molnar, and J.J. Hickman. 2013. Engineered In Vitro Feed-Forward Networks. Biotechnology & Biomaterials 3(1): 153.

    Google Scholar 

  • Neal, D., M.S. Sakar, R. Bashir, V. Chan, and H.H. Asada. 2015. Mechanical Characterization and Shape Optimization of Fascicle-like 3D Skeletal Muscle Tissues Contracted with Electrical and Optical Stimuli. Tissue Engineering. Part A 21(11–12): 1848–1858. doi:10.1089/ten.tea.2014.0317.

    Article  Google Scholar 

  • Neuwelt, E.A., B. Bauer, C. Fahlke, G. Fricker, C. Iadecola, D. Janigro, L. Leybaert, Z. Molnár, M.E. O’Donnell, J.T. Povlishock, N.R. Saunders, F. Sharp, D. Stanimirovic, R.J. Watts, and L.R. Drewes. 2011. Engaging Neuroscience to Advance Translational Research in Brain Barrier Biology. Nature Reviews Neuroscience 12(3): 169–182. http://www.nature.com/nrn/journal/v12/n3/suppinfo/nrn2995_S1.html.

    Google Scholar 

  • Ni, M., W.H. Tong, D. Choudhury, N.A.A. Rahim, C. Iliescu, and H. Yu. 2009. Cell Culture on MEMS Platforms: A Review. International Journal of Molecular Sciences 10(12): 5411–5441. doi:10.3390/ijms10125411.

    Article  Google Scholar 

  • Nikoletseas, M. 2010. Behavioral and Neural Plasticity. CreateSpace Independent Publishing Platform (August, 2010).

    Google Scholar 

  • Nistor, G.I., M.O. Totoiu, N. Haque, et al. 2005. Human Embryonic Stem Cells Differentiate into Oligodendrocytes in High Purity and Myelinate After Spinal Cord Transplantation. Glia 49(3): 385–396.

    Article  Google Scholar 

  • Offenhäusser, A., C. Sprössler, M. Matsuzawa, and W. Knoll. 1997. Field-Effect Transistor Array for Monitoring Electrical Activity from Mammalian Neurons in Culture. Biosensors and Bioelectronics 12(8): 819–826. doi:http://dx.doi.org/10.1016/S0956-5663(97)00047-X.

    Google Scholar 

  • Oleaga, C., C. Bernabini, A.S.T. Smith, B. Srinivasan, W. McLamb, V. Platt, L.R. Bridges, Y. Cai, S. Najjar, C. Martin, G. Ekman, J. Langer, G. Ouedraogo, J. Cotovio, L. Breton, M.L. Shuler, and J.J. Hickman. 2016. Multi-Organ Toxicity Demonstration in a Functional Human In Vitro System Composed of Four Organs. Sci Rep 6: 20030.

    Google Scholar 

  • Pagels, M., C.E. Hall, N.S. Lawrence, A. Meredith, T.G. Jones, H.P. Godfried, C.S. Pickles, J. Wilman, C.E. Banks, R.G. Compton, and L. Jiang. 2005. All-Diamond Microelectrode Array Device. Analytical Chemistry 77(11): 3705–3708. doi:10.1021/ac0502100.

    Article  Google Scholar 

  • Palmiotti, C.A., S. Prasad, P. Naik, K.M.D. Abul, R.K. Sajja, A.H. Achyuta, and L. Cucullo. 2014. In Vitro Cerebrovascular Modeling in the 21st Century: Current and Prospective Technologies. Pharmaceutical Research 31(12): 3229–3250. doi:10.1007/s11095-014-1464-6.

    Article  Google Scholar 

  • Pandey, U.B., and C.D. Nichols. 2011. Human Disease Models in Drosophila Melanogaster and the Role of the Fly in Therapeutic Drug Discovery. Pharmacological Reviews 63(2): 411–436. doi:10.1124/pr.110.003293.

    Article  Google Scholar 

  • Pardridge, W.M. 2002. Drug and Gene Delivery to the Brain: The Vascular Route. Neuron 36(4): 555–558. doi:http://dx.doi.org/10.1016/S0896-6273(02)01054-1.

    Google Scholar 

  • Pardridge, W.M. 2005. The Blood-Brain Barrier: Bottleneck in Brain Drug Development. NeuroRx 2(1): 3–14.

    Article  Google Scholar 

  • Pardridge, W.M. 2012. Drug Transport across the Blood–Brain Barrier. Journal of Cerebral Blood Flow & Metabolism 32(11): 1959–1972. doi:10.1038/jcbfm.2012.126.

    Article  Google Scholar 

  • Park, J.Y., C.M. Hwang, S.H. Lee, and S.H. Lee. 2007. Gradient Generation by an Osmotic Pump and the Behavior of Human Mesenchymal Stem Cells Under the Fetal Bovine Serum Concentration Gradient. Lab on a Chip 7(12): 1673–1680. doi:10.1039/b710777c.

    Article  Google Scholar 

  • Park, H.S., S. Liu, J. McDonald, N. Thakor, and I.H. Yang. 2013. Neuromuscular Junction in a Microfluidic Device. In Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, 3–7 July 2013. pp 2833–2835. doi:10.1109/EMBC.2013.6610130.

  • Perrier, A.L., V. Tabar, T. Barberi, M.E. Rubio, J. Bruses, N. Topf, N.L. Harrison, and L. Studer. 2004. Derivation of Midbrain Dopamine Neurons from Human Embryonic Stem Cells. Proceedings of the National Academy of Sciences of the United States of America 101(34): 12543–12548. doi:10.1073/pnas.0404700101.

    Article  Google Scholar 

  • Philips, T., and J.D. Rothstein. 2015. Rodent Models of Amyotrophic Lateral Sclerosis. in: editorial board, S J Enna (editor-in-chief) [et al] Current Protocols in Pharmacology 69:5.67.61–65.67.21.

    Google Scholar 

  • Pickard, R.S. 1979. A Review of Printed Circuit Microelectrodes and Their Production. Journal of Neuroscience Methods 1(4): 301–318.

    Article  Google Scholar 

  • Pomp, O., I. Brokhman, I. Ben-Dor, B. Reubinoff, and R.S. Goldstein. 2005. Generation of Peripheral Sensory and Sympathetic Neurons and Neural Crest Cells from Human Embryonic Stem Cells. Stem Cells 23(7): 923–930. doi:10.1634/stemcells.2005-0038.

    Article  Google Scholar 

  • Punga, A.R., and M.A. Ruegg. 2012. Signaling and Aging at the Neuromuscular Synapse: Lessons Learnt from Neuromuscular Diseases. Current Opinion in Pharmacology 12(3): 340–346. doi:http://dx.doi.org/10.1016/j.coph.2012.02.002.

    Google Scholar 

  • Ran, F.A., D. Hsu Patrick, C.-Y. Lin, S. Gootenberg Jonathan, S. Konermann, A.E. Trevino, A. Scott David, A. Inoue, S. Matoba, Y. Zhang, and F. Zhang. 2013. Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity. Cell 154(6): 1380–1389. doi:http://dx.doi.org/10.1016/j.cell.2013.08.021.

    Google Scholar 

  • Ravenscroft, M.S., K.E. Bateman, K.M. Shaffer, H.M. Schessler, D.R. Jung, T.W. Schneider, C.B. Montgomery, T.L. Custer, A.E. Schaffner, Q.Y. Liu, Y.X. Li, J.L. Barker, and J.J. Hickman. 1998. Developmental Neurobiology Implications from Fabrication and Analysis of Hippocampal Neuronal Networks on Patterned Silane-Modified Surfaces. Journal of the American Chemical Society 120(47): 12169–12177.

    Article  Google Scholar 

  • Ridderinkhof, K.R., M. Ullsperger, E.A. Crone, and S. Nieuwenhuis. 2004. The Role of the Medial Frontal Cortex in Cognitive Control. Science 306(5695): 443–447.

    Article  Google Scholar 

  • Robertson, J.A. 2001. Human Embryonic Stem Cell Research: Ethical and Legal Issues. Nature Reviews Genetics 2(1): 74–78.

    Article  Google Scholar 

  • Roth, E.A., T. Xu, M. Das, C. Gregory, J.J. Hickman, and T. Boland. 2004. Inkjet Printing for High-Throughput Cell Patterning. Biomaterials 25(17): 3707–3715.

    Article  Google Scholar 

  • Rumsey, J.W., M. Das, J.F. Kang, R. Wagner, P. Molnar, and J.J. Hickman. 2008. Tissue Engineering Intrafusal Fibers: Dose- and Time-Dependent Differentiation of Nuclear Bag Fibers in a Defined In Vitro System Using Neuregulin 1-Beta-1. Biomaterials 29(8): 994–1004. doi:10.1016/j.biomaterials.2007.10.042.

    Article  Google Scholar 

  • Rumsey, J.W., M. Das, M. Stancescu, M. Bott, C. Fernandez-Valle, and J.J. Hickman. 2009. Node of Ranvier Formation on Motoneurons In Vitro. Biomaterials 30(21): 3567–3572.

    Article  Google Scholar 

  • Rumsey, J.W., M. Das, A. Bhalkikar, M. Stancescu, and J.J. Hickman. 2010. Tissue Engineering the Mechanosensory Circuit of the Stretch Reflex Arc: Sensory Neuron Innervation of Intrafusal Muscle Fibers. Biomaterials 31(32): 8218–8227. doi:10.1016/j.biomaterials.2010.07.027.

    Article  Google Scholar 

  • Russo, S.J., and E.J. Nestler. 2013. The Brain Reward Circuitry in Mood Disorders. Nature Review Neuroscience 14(9): 609–625. doi:10.1038/nrn3381.

    Article  Google Scholar 

  • Sánchez-Danés, A., Y. Richaud-Patin, I. Carballo-Carbajal, S. Jiménez-Delgado, C. Caig, S. Mora, C. Di Guglielmo, M. Ezquerra, B. Patel, A. Giralt, J.M. Canals, M. Memo, J. Alberch, J. López-Barneo, M. Vila, A.M. Cuervo, E. Tolosa, A. Consiglio, and A. Raya. 2012. Disease-Specific Phenotypes in Dopamine Neurons from Human iPS-Based Models of Genetic and Sporadic Parkinson’s Disease. EMBO Molecular Medicine 4(5): 380–395. doi:10.1002/emmm.201200215.

    Article  Google Scholar 

  • Sander, J.D., and J.K. Joung. 2014. CRISPR-Cas Systems for Editing, Regulating and Targeting Genomes. Nature Biotechnology 32(4): 347–355. doi:10.1038/nbt.2842. http://www.nature.com/nbt/journal/v32/n4/abs/nbt.2842.html#supplementary-information.

    Article  Google Scholar 

  • Schulz, T.C., S.A. Noggle, G.M. Palmarini, D.A. Weiler, I.G. Lyons, K.A. Pensa, A.C.B. Meedeniya, B.P. Davidson, N.A. Lambert, and B.G. Condie. 2004. Differentiation of Human Embryonic Stem Cells to Dopaminergic Neurons in Serum-Free Suspension Culture. Stem Cells 22(7): 1218–1238. doi:10.1634/stemcells.2004-0114.

    Article  Google Scholar 

  • Schwartz, P.H., P.J. Bryant, T.J. Fuja, H. Su, D.K. O’Dowd, and H. Klassen. 2003. Isolation and Characterization of Neural Progenitor Cells from Post-Mortem Human Cortex. Journal of Neuroscience Research 74(6): 838–851. doi:10.1002/jnr.10854.

    Article  Google Scholar 

  • Selvaraj, V., P. Jiang, O. Chechneva, U.G. Lo, and W. Deng. 2012. Differentiating Human Stem Cells into Neurons and Glial Cells for Neural Repair. Frontiers in Bioscience 17: 65–89.

    Article  Google Scholar 

  • Serikawa, T., T. Mashimo, T. Kuramoro, B. Voigt, Y. Ohno, and M. Sasa. 2015. Advances on Genetic Rat Models of Epilepsy. Experimental Animals 64(1): 1–7.

    Article  Google Scholar 

  • Shaltouki, A., J. Peng, Q. Liu, M.S. Rao, and X. Zeng. 2013. Efficient Generation of Astrocytes from Human Pluripotent Stem Cells in Defined Conditions. Stem Cells 31(5): 941–952. doi:10.1002/stem.1334.

    Article  Google Scholar 

  • Shamblott, M.J., J. Axelman, S. Wang, E.M. Bugg, J.W. Littlefield, P.J. Donovan, P.D. Blumenthal, G.R. Huggins, and J.D. Gearhart. 1998. Derivation of Pluripotent Stem Cells from Cultured Human Primordial Germ Cells. Proceedings of the National Academy of Sciences of the United States of America 95(23): 13726–13731. doi:10.1073/pnas.95.23.13726.

    Article  Google Scholar 

  • Sharp, J., J. Frame, M. Siegenthaler, G. Nistor, and H.S. Keirstead. 2010. Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitor Cell Transplants Improve Recovery After Cervical Spinal Cord Injury. Stem Cells 28(1): 152–163. doi:10.1002/stem.245.

    Google Scholar 

  • Sheikh, S.I., and A.A. Amato. 2010. The Dorsal Root Ganglion Under Attack: The Acquired Sensory Ganglionopathies. Practical Neurology 10(6): 326–334. doi:10.1136/jnnp.2010.230532.

    Article  Google Scholar 

  • Shi, P., S. Nedelec, H. Wichterle, and L.C. Kam. 2010. Combined Microfluidics/Protein Patterning Platform for Pharmacological Interrogation of Axon Pathfinding. Lab on a Chip 10(8): 1005–1010. doi:10.1039/b922143c.

    Article  Google Scholar 

  • Shi, Y., P. Kirwan, and F.J. Livesey. 2012. Directed Differentiation of Human Pluripotent Stem Cells to Cerebral Cortex Neurons and Neural Networks. Nature Protocols 7(10): 1836–1846. doi:10.1038/nprot.2012.116.

    Article  Google Scholar 

  • Shimizu, K., H. Sasaki, H. Hida, H. Fujita, K. Obinata, M. Shikida, and E. Nagamori. 2009. Integration of Skeletal Muscle Cell onto Si-MEMS and Its Generative Force Measurement. In Micro Electro Mechanical Systems, 2009. IEEE 22nd International Conference. pp 403–406. doi:10.1109/MEMSYS.2009.4805404.

  • Shimohama, S., H. Sawada, Y. Kitamura, and T. Taniguchi. 2003. Disease Model: Parkinson’s Disease. Trends in Molecular Medicine 9(8): 360–365. doi:http://dx.doi.org/10.1016/S1471-4914(03)00117-5.

    Google Scholar 

  • Skaper, S.D. 2012. Compartmented Chambers for Studying Neurotrophic Factor Action. In Neurotrophic Factors: Methods and Protocols, ed. D.S. Skaper, 213–222. Totowa, NJ: Humana Press. doi:10.1007/978-1-61779-536-7_19.

    Chapter  Google Scholar 

  • Smith, A., C.J. Long, and J.J. Hickman. 2013. A Functional System for High-Content Screening of Neuromuscular Junctions In Vitro. Technology 1(1): 37–48.

    Article  Google Scholar 

  • Song, W., and X.A. Jin. 2015. Brain-Derived Neurotrophic Factor Inhibits Neuromuscular Junction Maturation in a cAMP-PKA-Dependent Way. Neuroscience Letters 591: 8–12. doi:http://dx.doi.org/10.1016/j.neulet.2015.02.019.

    Google Scholar 

  • Song, H., S.-K. Chung, and Y. Xu. 2010. Modeling Disease in Human ESCs Using an Efficient BAC-Based Homologous Recombination System. Cell Stem Cell 6(1): 80–89.

    Article  Google Scholar 

  • Soundararajan, P., B.W. Lindsey, C. Leopold, and V.F. Rafuse. 2007. Easy and Rapid Differentiation of Embryonic Stem Cells into Functional Motoneurons Using Sonic Hedgehog-Producing Cells. Stem Cells 25(7): 1697–1706. doi:10.1634/stemcells.2006-0654.

    Article  Google Scholar 

  • Southam, K.A., A.E. King, C.A. Blizzard, G.H. McCormack, and T.C. Dickson. 2013. Microfluidic Primary Culture Model of the Lower Motor Neuron–Neuromuscular Junction Circuit. Journal of Neuroscience Methods 218(2): 164–169. doi:http://dx.doi.org/10.1016/j.jneumeth.2013.06.002.

    Google Scholar 

  • Southam, K.A., A.E. King, C.A. Bliszzard, G.H. McCormack, and T.C. Dickson. 2015. A Novel In Vitro Primary Culture Model of the Lower Motor Neuron—Neuromuscular Junction Circuit. Microfulidic and Compartmentalized Platforms for Neurobiological Research Neuromethods 103: 181–193.

    Google Scholar 

  • Spira, M.E., and A. Hai. 2013. Multi-Electrode Array Technologies for Neuroscience and Cardiology. Nature Nanotechnology 8(2): 83–94.

    Article  Google Scholar 

  • Srinivasan, B., A.R. Kolli, M.B. Esch, H.E. Abaci, M.L. Shuler, and J.J. Hickman. 2015. TEER Measurement Techniques for In Vitro Barrier Model Systems. Journal of Laboratory Automation 20(2): 107–126. doi:10.1177/2211068214561025.

    Article  Google Scholar 

  • Stenger, D.A., J.H. Georger, C.S. Dulcey, J.J. Hickman, A.S. Rudolph, T.B. Nielsen, S.M. McCort, and J.M. Calvert. 1992. Coplanar Molecular Assemblies of Amino- and Perfluorinated Alkylsilanes: Characterization and Geometric Definition of Mammalian Cell Adhesion and Growth. Journal of the American Chemical Society 114(22): 8435–8442. doi:10.1021/ja00048a013.

    Article  Google Scholar 

  • Stenger, D.A., C.J. Pike, J.J. Hickman, and C.W. Cotman. 1993. Surface Determinants of Neuronal Survival and Growth on Self-Assembled Monolayers in Culture. Brain Research 630(1–2): 136–147.

    Article  Google Scholar 

  • Stenger, D.A., J.J. Hickman, K.E. Bateman, M.S. Ravenscroft, W. Ma, J.J. Pancrazio, K. Shaffer, A.E. Schaffner, D.H. Cribbs, and C.W. Cotman. 1998. Microlithographic Determination of Axonal/Dendritic Polarity in Cultured Hippocampal Neurons. Journal of Neuroscience Methods 82(2): 167–173.

    Article  Google Scholar 

  • Sterneckert, J.L., P. Reinhardt, and H.R. Scholer. 2014. Investigating Human Disease Using Stem Cell Models. Nature Reviews Genetics 15(9): 625–639. doi:10.1038/nrg3764.

    Article  Google Scholar 

  • Sung, J.H., and M.L. Shuler. 2009. A Micro Cell Culture Analog ([Small Micro]CCA) with 3-D Hydrogel Culture of Multiple Cell Lines to Assess Metabolism-Dependent Cytotoxicity of Anti-cancer Drugs. Lab on a Chip 9(10): 1385–1394. doi:10.1039/B901377F.

    Article  Google Scholar 

  • Sung, J.H., C. Kam, and M.L. Shuler. 2010. A Microfluidic Device for a Pharmacokinetic-Pharmacodynamic (PK-PD) Model on a Chip. Lab on a Chip 10(4): 446–455. doi:10.1039/b917763a.

    Article  Google Scholar 

  • Supinski, G., D. Nethery, T.M. Nosek, L.A. Callahan, D. Stofan, and A. DiMarco. 2000. Endotoxin Administration Alters the Force Vs. pCa Relationship of Skeletal Muscle Fibers. American Journal of Physiology—Regulatory Integrative Comparative Physiology 278(4): R891–R896.

    Google Scholar 

  • Swanborg, R.H. 1995. Animal Models of Human Disease—Experimental Autoimmune Encephalomyelitis in Rodents as a Model for Human Demyelinating Disease. Clinical Immunology and Immunopathology 77(1): 4–13. doi:http://dx.doi.org/10.1016/0090-1229(95)90130-2.

    Google Scholar 

  • Swarup, V., and J.P. Julien. 2011. ALS Pathogenesis: Recent Insights from Genetics and Mouse Models. Progress in Neuro-Psychopharmacology & Biological Psychiatry 35(2): 363–369. doi:10.1016/j.pnpbp.2010.08.006.

    Article  Google Scholar 

  • Taylor, A.M., M. Blurton-Jones, S.W. Rhee, D.H. Cribbs, C.W. Cotman, and N.L. Jeon. 2005. A Microfluidic Culture Platform for CNS Axonal Injury, Regeneration and Transport. Nature Methods 2(8): 599–605. http://www.nature.com/nmeth/journal/v2/n8/suppinfo/nmeth777_S1.html.

    Google Scholar 

  • Theocharidis, U., K. Long, C. ffrench-Constant, and A. Faissner. 2014. Chapter 1—Regulation of the Neural Stem Cell Compartment by Extracellular Matrix Constituents. In Progress in Brain Research, eds. B.W.-H. Alexander Dityatev, P. Asla, vol. 214. pp 3–28. Amsterdam: Elsevier. doi:http://dx.doi.org/10.1016/B978-0-444-63486-3.00001-3.

    Google Scholar 

  • Thomas, C.A., P.A. Springer, G.E. Loeb, Y. Berwald-Netter, and L.M. Okun. 1972. A Miniature Microelectrode Array to Monitor the Bioelectric Activity of Cultured Cells. Experimental Cell Research 74(1): 61–66.

    Article  Google Scholar 

  • Thomson, J.A., J. Itskovitz-Eldor, S.S. Shapiro, M.A. Waknitz, J.J. Swiergiel, V.S. Marshall, and J.M. Jones. 1998. Embryonic Stem Cell Lines Derived from Human Blastocysts. Science 282(5391): 1145–1147. doi:10.1126/science.282.5391.1145.

    Article  Google Scholar 

  • Tibbitt, M.W., and K.S. Anseth. 2009. Hydrogels as Extracellular Matrix Mimics for 3D Cell Culture. Biotechnology and Bioengineering 103(4): 655–663. doi:10.1002/bit.22361.

    Article  Google Scholar 

  • Timme, N., S. Ito, M. Myroshnychenko, F.-C. Yeh, E. Hiolski, P. Hottowy, and J.M. Beggs. 2014. Multiplex Networks of Cortical and Hippocampal Neurons Revealed at Different Timescales. PloS One 9(12), e115764. doi:10.1371/journal.pone.0115764.

    Article  Google Scholar 

  • Tintignac, L.A., H.-R. Brenner, and M.A. Rüegg. 2015. Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting. Physiological Reviews 95(3): 809–852. doi:10.1152/physrev.00033.2014.

    Article  Google Scholar 

  • Tojima, T., Y. Yamane, M. Takahashi, and E. Ito. 2000. Acquisition of Neuronal Proteins During Differentiation of NG108-15 cells. Neuroscience Research 37(2): 153–161. doi:http://dx.doi.org/10.1016/S0168-0102(00)00110-3.

    Google Scholar 

  • Ulrich-Lai, Y.M., and P. Herman. 2009. Neural Regulation of Endocrine and Autonomic Stress Responses. Nature Reviews Neuroscience 10(6): 397–409. http://www.nature.com/nrn/journal/v10/n6/suppinfo/nrn2647_S1.html.

    Google Scholar 

  • Umbach, J.A., K.L. Adams, C.B. Gundersen, and B.G. Novitch. 2012. Functional Neuromuscular Junctions Formed by Embryonic Stem Cell-Derived Motor Neurons. PLoS One 7(5): e36049. doi:10.1371/journal.pone.0036049.

    Google Scholar 

  • Valente, S., F. Alviano, C. Ciavarella, M. Buzzi, F. Ricci, P. Tazzari, P. Pagliaro, and G. Pasquinelli. 2014. Human Cadaver Multipotent Stromal/Stem Cells Isolated from Arteries Stored in Liquid Nitrogen for 5 Years. Stem Cell Research & Therapy 5(1): 8.

    Article  Google Scholar 

  • Vandamme, T.F. 2014. Use of Rodents as Models of Human Diseases. Journal of Pharmacy and Bioallied Sciences 6(1): 2–9. doi:10.4103/0975-7406.124301.

    Article  Google Scholar 

  • Vandenburgh, H., J. Shansky, F. Benesch-Lee, V. Barbata, J. Reid, L. Thorrez, R. Valentini, and G. Crawford. 2008. Drug-Screening Platform Based on the Contractility of Tissue-Engineered Muscle. Muscle & Nerve 37(4): 438–447. doi:10.1002/mus.20931.

    Article  Google Scholar 

  • Vandenburgh, H., J. Shansky, F. Benesch-Lee, K. Skelly, J.M. Spinazzola, Y. Saponjian, and B.S. Tseng. 2009. Automated Drug Screening with Contractile Muscle Tissue Engineered from Dystrophic Myoblasts. The FASEB Journal 23(10): 3325–3334. doi:10.1096/fj.09-134411.

    Article  Google Scholar 

  • Varghese, K., M. Das, N. Bhargava, M. Stancescu, P. Molnar, M.S. Kindy, and J.J. Hickman. 2009. Regeneration and Characterization of Adult Mouse Hippocampal Neurons in a Defined In Vitro System. Journal of Neuroscience Methods 177(1): 51–59. pii:S0165-0270(08)00565-7; doi:10.1016/j.jneumeth.2008.09.022.

    Google Scholar 

  • Vogt, A.K., G. Wrobel, W. Meyer, W. Knoll, and A. Offenhausser. 2005. Synaptic Plasticity in Micropatterned Neuronal Networks. Biomaterials 26(15): 2549–2557. doi:10.1016/j.biomaterials.2004.07.031.

    Article  Google Scholar 

  • Wallace, K., J.D. Strickland, P. Valdivia, W.R. Mundy, and T.J. Shafer. 2015. A Multiplexed Assay for Determination of Neurotoxicant Effects on Spontaneous Network Activity and Viability from Microelectrode Arrays. Neurotoxicology 49: 79–85. doi:10.1016/j.neuro.2015.05.007.

    Article  Google Scholar 

  • Walsh, K., J. Megyesi, and R. Hammond. 2005. Human Central Nervous System Tissue Culture: A Historical Review and Examination of Recent Advances. Neurobiology of Disease 18(1): 2–18.

    Article  Google Scholar 

  • Welberg, L. 2009. Computational Neuroscience: Model Behaviour. Nature Review Neuroscience 10(10): 696–697.

    Article  Google Scholar 

  • Wheeler, B.C., and G.J. Brewer. 2010. Designing Neural Networks in Culture: Experiments are Described for Controlled Growth, of Nerve Cells Taken from Rats, in Predesigned Geometrical Patterns on Laboratory Culture Dishes. Proceedings of the IEEE Institute of Electrical and Electronics Engineers 98(3): 398–406. doi:10.1109/JPROC.2009.2039029.

    Article  Google Scholar 

  • Wheeler, B.C., J.M. Corey, G.J. Brewer, and D.W. Branch. 1999. Microcontact Printing for Precise Control of Nerve Cell Growth in Culture. Journal of Biomechanical Engineering 121(1): 73–78.

    Article  Google Scholar 

  • Wilhelm, I., and I.A. Krizbai. 2014. In Vitro Models of the Blood–Brain Barrier for the Study of Drug Delivery to the Brain. Molecular Pharmaceutics 11(7): 1949–1963. doi:10.1021/mp500046f.

    Article  Google Scholar 

  • Wilson, K., P. Molnar, and J. Hickman. 2007. Integration of Functional Myotubes with a Bio-MEMS Device for Non-invasive Interrogation. Lab on a Chip 7(7): 920–922. doi:10.1039/b617939h.

    Article  Google Scholar 

  • Wilson, K., M. Stancescu, M. Das, J. Rumsey, and J. Hickman. 2011. Direct Patterning of Coplanar Polyethylene Glycol Alkylsilane Monolayers by Deep-Ultraviolet Photolithography as a General Method for High Fidelity, Long-Term Cell Patterning and Culture. Journal of Vacuum Science & Technology B 29(2): 21020. doi:10.1116/1.3549127.

    Google Scholar 

  • Wolozin, B., T. Sunderland, B.-b. Zheng, J. Resau, B. Dufy, J. Barker, R. Swerdlow, and H. Coon. 1992. Continuous Culture of Neuronal Cells from Adult Human Olfactory Epithelium. Journal of Molecular Neuroscience 3(3): 137–146. doi:10.1007/BF02919405.

    Article  Google Scholar 

  • Wyart, C., C. Ybert, L. Bourdieu, C. Herr, C. Prinz, and D. Chatenay. 2002. Constrained Synaptic Connectivity in Functional Mammalian Neuronal Networks Grown on Patterned Surfaces. Journal of Neuroscience Methods 117(2): 123–131.

    Article  Google Scholar 

  • Xie, H., L. Hu, and G. Li. 2010. SH-SY5Y Human Neuroblastoma Cell Line: In Vitro Cell Model of Dopaminergic Neurons in Parkinson’s Disease. Chinese Medical Journal 123(8): 1086–1092.

    Google Scholar 

  • Xu, T., C.A. Gregory, P. Molnar, X. Cui, S. Jalota, S.B. Bhaduri, and T. Boland. 2006. Viability and Electrophysiology of Neural Cell Structures Generated by the Inkjet Printing Method. Biomaterials 27(19): 3580–3588. doi:10.1016/j.biomaterials.2006.01.048.

    Google Scholar 

  • Yamanaka, S. 2012. Induced Pluripotent Stem Cells: Past, Present, and Future. Cell Stem Cell 10(6): 678–684. doi:10.1016/j.stem.2012.05.005.

    Article  MathSciNet  Google Scholar 

  • Yoshida, M., S. Kitaoka, N. Egawa, M. Yamane, R. Ikeda, K. Tsukita, N. Amano, A. Watanabe, M. Morimoto, J. Takahashi, H. Hosoi, T. Nakahata, H. Inoue, and K. Saito Megumu. 2015. Modeling the Early Phenotype at the Neuromuscular Junction of Spinal Muscular Atrophy Using Patient-Derived iPSCs. Stem Cell Reports 4(4): 561–568. doi:10.1016/j.stemcr.2015.02.010.

    Article  Google Scholar 

  • Zahavi, E.E., A. Ionescu, S. Gluska, T. Gradus, K. Ben-Yaakov, and E. Perlson. 2015. A Compartmentalized Microfluidic Neuromuscular Co-culture System Reveals Spatial Aspects of GDNF Functions. Journal of Cell Science 128(6): 1241–1252. doi:10.1242/jcs.167544.

    Article  Google Scholar 

  • Zhang, J., F. Laiwalla, J. Kim, H. Urabe, R. Van Wagenen, S. Yoon-Kyu, B.W. Connors, and A.V. Nurmikko. 2009. A Microelectrode Array Incorporating an Optical Waveguide Device for Stimulation and Spatiotemporal Electrical Recording of Neural Activity. In EMBC 2009. Annual International Conference of the IEEE. pp 2046–2049. doi:10.1109/IEMBS.2009.5333947.

  • Zordan, S., M. Zanotto, T. Nieus, S. Di Marco, H. Amin, A. Maccione, and L. Berdondini. 2015. A Scalable High Performance Client/Server Framework to Manage and Analyze High Dimensional Datasets Recorded by 4096 CMOS-MEAs. In Neural Engineering (NER), 2015 7th International IEEE/EMBS Conference. pp 968–971. doi:10.1109/NER.2015.7146787.

  • Zweifel, L.S., R. Kuruvilla, and D.D. Ginty. 2005. Functions and Mechanisms of Retrograde Neurotrophin Signalling. Nature Review Neuroscience 6(8): 615–625.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Hickman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guo, X. et al. (2016). In Vitro Modeling of Nervous System: Engineering of the Reflex Arc. In: Zhang, L., Kaplan, D. (eds) Neural Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-31433-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31433-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31431-0

  • Online ISBN: 978-3-319-31433-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics