Skip to main content

Non-unitary Evolution of Quantum Logics

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 184))

Abstract

In this work we present a dynamical approach to quantum logics. By changing the standard formalism of quantum mechanics to allow non-Hermitian operators as generators of time evolution, we address the question of how can logics evolve in time. In this way, we describe formally how a non-Boolean algebra may become a Boolean one under certain conditions. We present some simple models which illustrate this transition and develop a new quantum logical formalism based in complex spectral resolutions, a notion that we introduce in order to cope with the temporal aspect of the logical structure of quantum theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We do not consider the Khalfin mode since it has an extremely long decaying time [47, 48].

References

  1. F.G. Scholtz, H.B. Geyer, F.J.W. Hahne, Ann. Phys. 213, 74–101 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  2. A. Guo, G.J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G.A. Siviloglou, D.N. Christodoulides, Phys. Rev. Lett. 103, 093902 (2009)

    Article  ADS  Google Scholar 

  3. S. Klaiman, U. Günther, N. Moiseyev, Phys. Rev. Lett. 101, 080402 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  4. O. Bendix, R. Fleischmann, T. Kottos, B. Shapiro, J. Phys. A: Math. Theor. 43, (2010)

    Google Scholar 

  5. M. Castagnino, S. Fortin, J. Phys. A 45, 444009 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Castagnino, R. Id, Betan, R. Laura, R.J. Liotta J. Phys. A: Math. Gen. 35, 6055–6074 (2002)

    Google Scholar 

  7. A. Bohm, Quantum Mechanics, Foundations and Applications (Springer, Berlin, 1986)

    Book  MATH  Google Scholar 

  8. A. Bohm, N.L. Harshman, Quantum theory in the rigged Hilbert space—irreversibility from causality, in Irreversibility and Causality Semigroups and Rigged Hilbert Spaces, Volume 504 of the series Lecture Notes in Physics, ed. by A. Bohm, H. Doebner, P. Kielanowski (Springer, Berlin, 2007), pp. 179–237

    Google Scholar 

  9. R. Weder, J. Math. Phys. 15, 20 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  10. E. Sudarsham, C. Chiu, V. Gorini, Phys. Rev. D 18, 2914–2929 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  11. M. Castagnino, R. Laura, Phys. Rev. A 56, 108–119 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  12. R. Laura, M. Castagnino, Phys. Rev. A 57, 4140–4152 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  13. R. Laura, M. Castagnino, Phys. Rev. E 57, 3948–3961 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  14. M. Castagnino, S. Fortin, Mod. Phys. Lett. A 26, 2365–2373 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Castagnino, S. Fortin, J. Phys. A 45, 444009 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  16. J. Lacki, The early axiomatizations of quantum mechanics: Jordan, von Neumann and the continuation of Hilbert’s program. Arch. Hist. Exact Sci. 54, 279–318 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Rèdei, Quantum Logic in Algebraic Approach (Kluwer Academic Publishers, Dordrecht, 1998)

    Book  MATH  Google Scholar 

  18. M. Reed, B. Simon, Methods of Modern Mathematical Physics I: Functional Analysis (Academic Press, New York, 1972)

    MATH  Google Scholar 

  19. J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1996)

    MATH  Google Scholar 

  20. G. Birkhoff, J. von Neumann, Ann. Math. 37, 823–843 (1936)

    Article  Google Scholar 

  21. K. Engesser, D.M. Gabbay, D. Lehmann (eds.), in Handbook of Quantum Logic and Quantum Structures (Quantum Logic) (North-Holland, 2009)

    Google Scholar 

  22. Kalmbach, Orthomodular Lattices (Academic Press, San Diego, 1983)

    MATH  Google Scholar 

  23. M.L. Dalla Chiara, R. Giuntini, R. Greechie, Reasoning in Quantum Theory (Kluwer Academic Publishers, Dordrecht, 2004)

    Book  MATH  Google Scholar 

  24. C. Piron, Foundations of Quantum Physics (Addison-Wesley, Cambridge, 1976)

    Book  MATH  Google Scholar 

  25. V. Varadarajan, Geometry of Quantum Theory I (Princeton, van Nostrand, 1968)

    Book  MATH  Google Scholar 

  26. V. Varadarajan, Geometry of Quantum Theory II (Princeton, van Nostrand, 1970)

    MATH  Google Scholar 

  27. I. Stubbe, B.V. Steirteghem, Propositional systems, Hilbert lattices and generalized Hilbert spaces, in Handbook of Quantum Logic Quantum Structures: Quantum Structures, ed. by K. Engesser, D.M. Gabbay, D. Lehmann (Elsevier, Amsterdam, 2007), pp. 477–523

    Chapter  Google Scholar 

  28. M. Solèr, Communications in Algebra 23, 219–243

    Google Scholar 

  29. M. Schlosshauer, Decoherence and the Quantum-to-Classical Transition (Springer, Berlin, 2007)

    Google Scholar 

  30. C. Gardiner, P. Zoller, Quantum noise (Springer, 2004)

    Google Scholar 

  31. S. Fortin, L. Vanni, Found. Phys. 44, 1258–1268 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  32. W. Zurek, Phys. Rev. D 24, 1516–1525 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  33. W. Zurek, Rev. Mod. Phys. 75, 715–776 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  34. M. Castagnino, S. Fortin, R. Laura, O. Lombardi, Class. Quant. Grav. 25, 154002 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  35. M. Castagnino, S. Fortin, O. Lombardi, Mod. Phys. Lett. A 25, 1431–1439 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  36. M. Castagnino, S. Fortin, O. Lombardi, J. Phys. A 43, 065304 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  37. M. Castagnino, S. Fortin, O. Lombardi, Mod. Phys. Lett. A 25, 611–617 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  38. S. Ardenghi, S. Fortin, M. Narvaja, O. Lombardi, Int. J. Mod. Phys. D 20, 861–875 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  39. M. Castagnino, S. Fortin, Int. J. Theor. Phys. 50, 2259–2267 (2011)

    Article  MathSciNet  Google Scholar 

  40. M. Castagnino, S. Fortin, Int. J. Theor. Phys. 52, 1379–1398 (2013)

    Article  MathSciNet  Google Scholar 

  41. S. Fortin, O. Lombardi, M. Castagnino, Braz. J. Phys. 44, 138–153 (2014)

    Article  Google Scholar 

  42. M. Castagnino, S. Fortin, Mod. Phys. Lett. A 26, 2365–2373 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  43. J. Bub, Interpreting the Quantum World (Cambridge University Press, Cambridge, 1997)

    MATH  Google Scholar 

  44. D.W. Cohen, An Introduction to Hilbert Space and Quantum Logic (Springer, New York, 1989)

    Book  MATH  Google Scholar 

  45. C. Kiefer, D. Polarski, Adv. Sci. Lett. 2, 164–173 (2009)

    Article  Google Scholar 

  46. C. Kiefer, D. Polarski, Ann. Phys. 7, 137–158 (1998)

    Article  Google Scholar 

  47. M. Castagnino, R. Laura, Phys. Rev. A 62, 022107 (2000)

    Article  ADS  Google Scholar 

  48. M. Castagnino, O. Lombardi, Phys. Rev. A 72, 012102 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  49. M. Rédei, S. Summers, Stud. Hist. Philos. Sci. Part B: Stud. Hist. Philos. Mod. Phys. 38(2), 390–417 (2007)

    Article  Google Scholar 

  50. M. Castagnino, M. Gadella, F. Gaioli, R. Laura, Int. J. Theor. Phys. 38, 2823–2865 (1999)

    Article  MathSciNet  Google Scholar 

  51. M. Castagnino, R. Id, Betan, R. Laura, R.J. Liotta, J. Phys. A 35, 6055 (2002)

    Google Scholar 

  52. M. Castagnino, R. Laura, Phys. Rev. A 56, 108 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  53. A. Bohm, I. Antoniou, P. Kielanowski, J. Math. Phys. 36, 2593 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  54. A. Bohm, M. Gadella, G. Bruce, Mainland. Am. J. Phys. 57, 1103 (1989)

    Article  ADS  Google Scholar 

  55. I.E. Antoniou, M. Gadella, E. Karpov, I. Prigogine, G. Pronko, Chaos. Solitons Fractals 12, 2757–2775 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  56. Rev Baumgärtel, Math. Phys. 18, 61 (2006)

    Google Scholar 

  57. T. Petrosky, I. Prigogine, S. Tasaki, Phys. A 173, 175–242 (1991)

    Article  MathSciNet  Google Scholar 

  58. T. Petrosky, I. Prigogine, Phys. A 175, 146–209 (1991)

    Article  MathSciNet  Google Scholar 

  59. I. Antoniou, I. Prigogine, Phys. A 192, 443–464 (1993)

    Article  MathSciNet  Google Scholar 

  60. I.E. Antoniou, Z. Suchenecki, R. Laura, S. Tasaki, Phys. A 241, 737–772 (1997)

    Article  Google Scholar 

  61. J.M. Jauch, Foundations of Quantum Mechanics (Addison-Wesley, Cambridge, 1968)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Fortin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Fortin, S., Holik, F., Vanni, L. (2016). Non-unitary Evolution of Quantum Logics. In: Bagarello, F., Passante, R., Trapani, C. (eds) Non-Hermitian Hamiltonians in Quantum Physics. Springer Proceedings in Physics, vol 184. Springer, Cham. https://doi.org/10.1007/978-3-319-31356-6_14

Download citation

Publish with us

Policies and ethics