Skip to main content

Correlation Between Human Aesthetic Judgement and Spatial Complexity Measure

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9596))

Abstract

The quantitative evaluation of order and complexity conforming with human intuitive perception has been at the core of computational notions of aesthetics. Informational theories of aesthetics have taken advantage of entropy in measuring order and complexity of stimuli in relation to their aesthetic value. However entropy fails to discriminate structurally different patterns in a 2D plane. This paper investigates a computational measure of complexity, which is then compared to a results from a previous experimental study on human aesthetic perception in the visual domain. The model is based on the information gain from specifying the spacial distribution of pixels and their uniformity and non-uniformity in an image. The results of the experiments demonstrate the presence of correlations between a spatial complexity measure and the way in which humans are believed to aesthetically appreciate asymmetry. However the experiments failed to provide a significant correlation between the measure and aesthetic judgements of symmetrical images.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andrienko, Y.A., Brilliantov, N.V., Kurths, J.: Complexity of two-dimensional patterns. Eur. Phys. J. B 15(3), 539–546 (2000)

    Article  Google Scholar 

  2. Arnheim, R.: Art and Visual Perception: A Psychology of the Creative Eye. Univ of California Press, Berkeley (1954)

    Google Scholar 

  3. Arnheim, R.: Towards a Psychology of Art/entropy and Art an Essay on Disorder and Order. The Regents of the University of California (1966)

    Google Scholar 

  4. Arnheim, R.: Visual Thinking. Univ of California Press, Berkeley (1969)

    Google Scholar 

  5. Bates, J.E., Shepard, H.K.: Measuring complexity using information fluctuation. Phys. Lett. A 172(6), 416–425 (1993)

    Article  Google Scholar 

  6. Bense, M., Nee, G.: Computer grafik. In: Bense, M., Walther, E. (eds.) Edition Rot, vol. 19. Walther, Stuttgart (1965)

    Google Scholar 

  7. Bense, M.: Aestetica: Programmierung des Schönen, allgemeine Texttheorie und Textästhetik [Aesthetica : Programming of beauty, general text theory and aesthetics]. Agis-Verlag (1960)

    Google Scholar 

  8. Bense, M.: Kleine abstrakte ästhetik [small abstract aesthetics]. In: Walther, E. (ed.) Edition Rot, vol. 38 (1969)

    Google Scholar 

  9. Birkhoff, G.: Aesthetic Measure. Harvard University Press, Cambridge (1933)

    Book  MATH  Google Scholar 

  10. Ciesielski, V., Barile, P., Trist, K.: Finding image features associated with high aesthetic value by machine learning. In: Machado, P., McDermott, J., Carballal, A. (eds.) EvoMUSART 2013. LNCS, vol. 7834, pp. 47–58. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Series in Telecommunications and Signal Processing. Wiley-Interscience, New York (2006)

    MATH  Google Scholar 

  12. Dawkins, R.: The Blind Watchmaker. W. W. Norton, New York (1986)

    Google Scholar 

  13. den Heijer, E., Eiben, A.E.: Comparing aesthetic measures for evolutionary art. In: Chio, C., Brabazon, A., Caro, G.A., Ebner, M., Farooq, M., Fink, A., Grahl, J., Greenfield, G., Machado, P., O’Neill, M., Tarantino, E., Urquhart, N. (eds.) EvoApplications 2010, Part II. LNCS, vol. 6025, pp. 311–320. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Eysenck, H.J.: An experimental study of aesthetic preference for polygonal figures. J. Gen. Psychol. 79(1), 3–17 (1968)

    Article  Google Scholar 

  15. Eysenck, H.J.: The empirical determination of an aesthetic formula. Psychol. Rev. 48(1), 83 (1941)

    Article  Google Scholar 

  16. Eysenck, H.J.: The experimental study of the ‘good gestalt’ –a new approach. Psychol. Rev. 49(4), 344 (1942)

    Article  Google Scholar 

  17. Franke, H.W.: A cybernetic approach to aesthetics. Leonardo 10(3), 203–206 (1977)

    Article  MathSciNet  Google Scholar 

  18. Galanter, P.: Computational aesthetic evaluation: past and future. In: McCormack, J., d’IInverno, M. (eds.) Computer and Creativity, pp. 255–293. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. den Heijer, E.: Autonomous Evolutionary Art, Ph.D. thesis. Vrije Universiteit, Amsterdam (2013)

    Google Scholar 

  20. Jacobsen, T.: Beauty and the brain: culture, history and individual differences in aesthetic appreciation. J. Anat. 216(2), 184–191 (2010)

    Article  Google Scholar 

  21. Jacobsen, T., Hofel, L.: Aesthetic judgments of novel graphic patterns: analyses of individual judgments. Percept. Mot. Skills 95(3), 755–766 (2002)

    Article  Google Scholar 

  22. Javaheri Javid, M.A., Blackwell, T., Zimmer, R., Al-Rifaie, M.M.: Spatial complexity measure for characterising cellular automata generated 2D patterns. In: Pereira, F., Machado, P., Costa, E., Cardoso, A. (eds.) EPIA 2015. LNCS, vol. 9273, pp. 201–212. Springer, Heidelberg (2015)

    Google Scholar 

  23. Javid, M.A.J., al-Rifaie, M.M., Zimmer, R.: An informational model for cellular automata aesthetic measure. In: AISB Symposium on Computational Creativity. University of Kent, Canterbury, UK (2015)

    Google Scholar 

  24. Latham, W.H., Todd, S.: Computer sculpture. IBM Syst. J. 28(4), 682–688 (1989)

    Article  Google Scholar 

  25. Li, M.: An introduction to Kolmogorov complexity and its applications. Springer, New York (1997)

    Book  MATH  Google Scholar 

  26. Machado, P., Cardoso, A.: Computing aesthetics. In: de Oliveira, F.M. (ed.) SBIA 1998. LNCS (LNAI), vol. 1515, pp. 219–228. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  27. Machado, P., Romero, J., Manaris, B.: Experiments in computational aesthetics: an iterative approach to stylistic change in evolutionary art. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music, pp. 381–415. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  28. McCormack, J.: Open problems in evolutionary music and art. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 428–436. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  29. McCormack, J.: Facing the future: evolutionary possibilities for human-machine creativity. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution, pp. 417–451. Springer, Heidleberg (2008)

    Chapter  Google Scholar 

  30. Moles, A.: Information Theory and Esthetic Perception. Illinois Press, Urbana (1968). Trans. JE Cohen. U

    Google Scholar 

  31. Nake, F.: Information aesthetics: an heroic experiment. J. Math. Arts 6(2–3), 65–75 (2012)

    Article  MathSciNet  Google Scholar 

  32. Noll, A.M.: The digital computer as a creative medium. IEEE Spectr. 4(10), 89–95 (1967)

    Article  Google Scholar 

  33. Rigau, J., Feixas, M., Sbert, M.: Informational aesthetics measures. IEEE Comput. Graph. Appl. 28(2), 24–34 (2008)

    Article  Google Scholar 

  34. Rigau, J., Feixas, M., Sbert, M.: Conceptualizing Birkhoff’s aesthetic measureusing shannon entropy and kolmogorov complexity. In: Cunningham, D.W., Meyer, G., Neumann, L. (eds.) Workshop on Computational Aesthetics, pp. 105–112. Eurographics Association, Banff, Alberta, Canada (2007)

    Google Scholar 

  35. Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)

    Google Scholar 

  36. Sims, K.: Artificial evolution for computer graphics. Technical Report, TR-185, Thinking Machines Corporation (1991)

    Google Scholar 

  37. Staudek, T.: Exact aesthetics, object and scene to message. Ph.D. thesis, Faculty of Informatics, Masaryk University of Brno (2002)

    Google Scholar 

  38. Wackerbauer, R., Witt, A., Atmanspacher, H., Kurths, J., Scheingraber, H.: A comparative classification of complexity measures. Chaos, Solitons & Fractals 4(1), 133–173 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wilson, D.J.: An experimental investigation of Birkhoff’s aesthetic measure. J. Abnorm. Soc. Psychol. 34(3), 390 (1939)

    Article  Google Scholar 

  40. Zurek, W.H.: Algorithmic randomness and physical entropy. Phys. Rev. A 40(8), 4731 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to Thomas Jacobsen of Helmut Schmidt University for granting permission to use his experimental stimuli.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Javaheri Javid .

Editor information

Editors and Affiliations

Appendix

Appendix

In this example the pattern is composed of two different colours \( S=\{ white,black\}\) where the set of permutations with repetition is \( \{ ww,wb,bb,bw\} \). Considering the mean information gain (Eq. 8) and given the matrix M (Eq. 7), the calculations can be performed as follows:

figure a

\(\begin{array}{lcl} white-white \\ P{(w,w_{(i,j+1)})} = \frac{5}{6} \\ P{(w|w_{(i,j+1)})} =\frac{4}{5} \\ P(w,w_{(i,j+1)})= \frac{5}{6} \times \frac{4}{5}=\frac{2}{3}\\ {G}{(w,w_{(i,j+1)})} = \frac{2}{3} \log _2P (\frac{4}{5}) \\ {G}{(w,w_{(i,j+1)})} = 0.2146 \; bits \\ white-black \\ P{(w,b_{(i,j+1)})} = \frac{5}{6} \\ P{(w|b_{(j+1)})} =\frac{1}{5} \\ P(w,b_{(i,j+1)})= \frac{5}{6} \times \frac{1}{5}=\frac{1}{6}\\ \overline{G}{(w,b_{(i,j+1)})} = \frac{1}{6} \log _2P{\frac{1}{5}} \\ \overline{G}{(w,b_{(i,j+1)})} = 0.3869 \; bits \\ \end{array}\) \(\begin{array}{lcl} black-black \\ P{(b,b_{(i,j+1)})} = \frac{1}{6}\\ P{(b|b_{(i,j+1)})} =\frac{1}{1} \\ P(b,b_{(i,j+1)})= \frac{1}{6} \times \frac{1}{1}=\frac{1}{6}\\ {G}{(b,b_{(i,j+1)})} = \frac{1}{6} \log _2P(1) \\ {G}{(b,b_{(i,j+1)})} = 0 \; bits\\ black-white \\ P{(b,b_{(i,j+1)})} = \frac{1}{6} \\ P{(b|w_{(i,j+1)})} =\frac{0}{1} \\ P(b,w_{(i,j+1)})= \frac{1}{6} \times {0} \\ {G}{(b,w_{(i,j+1)})} = 0 \; bits \\ \\ \end{array}\)

\(\begin{array}{lcc} \overline{G}= {G}{(w,w_{(i,j+1)})}+{G}{(w,b_{(i,j+1)})} +{G}{(b,b_{(i,j+1)})} +{G}{(b,w_{(i,j+1)})} \\ \overline{G} = 0.6016 \; bits \\ \end{array}\)

In \( white-white \) case G measures the uniformity and spatial property where \( P{(w,w_{(i,j+1)})} \) is the joint probability that a pixel is white and it has a neighbouring pixel at its \( (i,j+1) \) position, \( P{(w|w_{(i,j+1)})} \) is the conditional probability of a pixel is white given that it has white neighbouring pixel at its \( (i,j+1) \) position, \( P{(w,w_{(i,j+1)})} \) is the joint probability that a pixel is white and it has neighbouring pixel at its \( (i,j+1) \) position, \( {G}{(w,w_{(i,j+1)})} \) is information gain in bits from specifying a white pixel where it has a white neighbouring pixel at its \( (i,j+1) \) position. The same calculations are performed for the rest of cases; black-black, white-black and black-white.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Javid, M.A.J., Blackwell, T., Zimmer, R., al-Rifaie, M.M. (2016). Correlation Between Human Aesthetic Judgement and Spatial Complexity Measure. In: Johnson, C., Ciesielski, V., Correia, J., Machado, P. (eds) Evolutionary and Biologically Inspired Music, Sound, Art and Design. EvoMUSART 2016. Lecture Notes in Computer Science(), vol 9596. Springer, Cham. https://doi.org/10.1007/978-3-319-31008-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31008-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31007-7

  • Online ISBN: 978-3-319-31008-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics