Skip to main content

Plecto: A Low-Level Interactive Genetic Algorithm for the Evolution of Audio

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9596))

Abstract

The creative potential of Genetic Algorithms (GAs) has been explored by many musicians who attempt to harness the unbound possibilities for creative search evident in nature. Within this paper, we investigate the possibility of using Continuous Time Recurrent Neural Networks (CTRNNs) as an evolvable low-level audio synthesis structure, affording users access to a vast creative search space of audio possibilities. Specifically, we explore some initial GA designs through the development of Plecto (see www.plecto.io), a creative tool that evolves CTRNNs for the discovery of audio. We have found that the evolution of CTRNNs offers some interesting prospects for audio exploration and present some design considerations for the implementation of such a system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dahlstedt, P., Nordahl, M.G.: Living melodies: coevolution of sonic communication. Leonardo 34(3), 243–248 (2001)

    Article  Google Scholar 

  2. McCormack, J.: Facing the future: evolutionary possibilities for human-machine creativity. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution, pp. 417–451. Springer, New York (2008)

    Chapter  Google Scholar 

  3. McCormack, J.: Open problems in evolutionary music and art. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 428–436. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Bown, O.: Empirically grounding the evaluation of creative systems: incorporating interaction design. In: Proceedings of the Fifth International Conference on Computational Creativity (2014)

    Google Scholar 

  5. Husbands, P., Copley, P., Eldridge, A., Mandelis, J.: An introduction to evolutionary computing for musicians. In: Miranda, E.R., Biles, J.A. (eds.) Evolutionary Computer Music, pp. 1–27. Springer, New York (2007)

    Chapter  Google Scholar 

  6. Tzimeas, D., Mangina, E.: Dynamic techniques for genetic algorithm-based music systems. Comput. Music J. 33(3), 45–60 (2009)

    Article  Google Scholar 

  7. Bown, O.: Ecosystem models for real-time generative music: A methodology and framework. In: International Computer Music Conference (Gary Scavone 16 to 21 August 2009), The International Computer Music Association, pp. 537–540, August 2009

    Google Scholar 

  8. Tokui, N., Iba, H.: Music composition with interactive evolutionary computation. In: Proceedings of the 3rd International Conference on Generative Art, vol. 17, pp. 215–226 (2000)

    Google Scholar 

  9. Woolf, S., Yee-King, M.: Virtual and physical interfaces for collaborative evolution of sound. Contemp. Music Rev. 22(3), 31–41 (2003)

    Article  Google Scholar 

  10. Secretan, J., Beato, N., D’Ambrosio, D.B., Rodriguez, A., Campbell, A., Folsom-Kovarik, J.T., Stanley, K.O.: Picbreeder: a case study in collaborative evolutionary exploration of design space. Evol. Comput. 19(3), 373–403 (2011)

    Article  Google Scholar 

  11. Lehman, J., Stanley, K.O.: Exploiting open-endedness to solve problems through the search for novelty. In: ALIFE, pp. 329–336 (2008)

    Google Scholar 

  12. Yee-King, M., Roth, M.: Synthbot: an unsupervised software synthesizer programmer. In: Proceedings of the International Computer Music Conference, Ireland (2008)

    Google Scholar 

  13. Yee-King, M.J.: An automated music improviser using a genetic algorithm driven synthesis engine. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 567–576. Springer, Heidelberg (2007)

    Google Scholar 

  14. MacCallum, R.M., Mauch, M., Burt, A., Leroi, A.M.: Evolution of music by public choice. Proc. Nat. Acad. Sci. 109(30), 12081–12086 (2012)

    Article  Google Scholar 

  15. Magnus, C., Cal IT CRCA: Evolving electroacoustic music: the application of genetic algorithms to time-domain waveforms. In: Proceedings of the 2004 International Computer Music Conference, pp. 173–176. Citeseer (2004)

    Google Scholar 

  16. Biles, J., Anderson, P., Loggi, L.: Neural network fitness functions for a musical IGA (1996)

    Google Scholar 

  17. Mozer, M.C.: Neural network music composition by prediction: Exploring the benefits of psychoacoustic constraints and multi-scale processing. Connection Sci. 6(2–3), 247–280 (1994)

    Article  Google Scholar 

  18. Bown, O., Lexer, S.: Continuous-time recurrent neural networks for generative and interactive musical performance. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 652–663. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Ohya, K.: A sound synthesis by recurrent neural network. In: Proceedings of the 1995 International Computer Music Conference, pp. 420–423 (1995)

    Google Scholar 

  20. Eldridge, A.: Neural oscillator synthesis: Generating adaptive signals with a continuous-time neural model

    Google Scholar 

  21. Beer, R.D.: On the dynamics of small continuous-time recurrent neural networks. Adapt. Behav. 3(4), 469–509 (1995)

    Article  MathSciNet  Google Scholar 

  22. Blanco, A., Delgado, M., Pegalajar, M.: A genetic algorithm to obtain the optimal recurrent neural network. Int. J. Approximate Reasoning 23(1), 67–83 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Machado, P., Martins, T., Amaro, H., Abreu, P.H.: An interface for fitness function design. In: Romero, J., McDermott, J., Correia, J. (eds.) EvoMUSART 2014. LNCS, vol. 8601, pp. 13–25. Springer, Heidelberg (2014)

    Google Scholar 

  24. Jordà, S.: Faust music on line: An approach to real-time collective composition on the internet. Leonardo Music J. 9, 5–12 (1999)

    Article  Google Scholar 

  25. McCormack, J.: Evolving sonic ecosystems. Kybernetes 32(1/2), 184–202 (2003)

    Article  Google Scholar 

  26. Routen, T.: Techniques for the visualisation of genetic algorithms. In: Proceedings of the First IEEE Conference on Evolutionary Computation, 1994, IEEE World Congress on Computational Intelligence, pp. 846–851. IEEE (1994)

    Google Scholar 

  27. Mach, M.Z., Zetakova, M.: Visualising genetic algorithms: a way through the labyrinth of search space. In: Sincak, P., Vascak, J., Kvasnicak, V., Pospichal, J. (eds.) Intelligent Technologies-Theory and Applications, pp. 279–285. IOS Press, Amsterdam (2002)

    Google Scholar 

  28. Schedl, M., Höglinger, C., Knees, P.: Large-scale music exploration in hierarchically organized landscapes using prototypicality information. In: Proceedings of the 1st ACM International Conference on Multimedia Retrieval, p. 8. ACM (2011)

    Google Scholar 

  29. Schwarz, D.: The sound space as musical instrument: playing corpus-based concatenative synthesis. New Interfaces for Musical Expression (NIME), pp. 250–253 (2012)

    Google Scholar 

  30. Plecto. http://www.plecto.io

  31. Nelson, G.L.: Sonomorphs: An application of genetic algorithms to the growth and development of musical organisms. In: Proceedings of the Fourth Biennial Art & Technology Symposium, vol. 155 (1993)

    Google Scholar 

  32. Darwin Tunes. http://darwintunes.org

  33. Picbreeder. http://www.picbreeder.org

  34. Piamonte, D.P.T., Abeysekera, J.D., Ohlsson, K.: Understanding small graphical symbols: a cross-cultural study. Int. J. Ind. Ergon. 27(6), 399–404 (2001)

    Article  Google Scholar 

  35. Dahlstedt, P.: Creating and exploring huge parameter spaces: Interactive evolution as a tool for sound generation. In: Proceedings of the 2001 International Computer Music Conference, pp. 235–242 (2001)

    Google Scholar 

  36. Gohlke, K., Hlatky, M., Heise, S., Black, D., Loviscach, J.: Track displays in daw software: beyond waveform views. In: Audio Engineering Society Convention 128, Audio Engineering Society (2010)

    Google Scholar 

  37. Sound Cloud. https://soundcloud.com

  38. Sound Hunters. http://soundhunters.tv/create

  39. Yu, G., Slotine, J.J.: Audio classification from time-frequency texture. arXiv preprint arxiv:0809.4501 (2008)

  40. Google Maps. https://www.google.es/maps

  41. Bown, O., McCormack, J.: Taming nature: tapping the creative potential of ecosystem models in the arts. Digital Creativity 21(4), 215–231 (2010)

    Article  Google Scholar 

  42. Baluja, S., Pomerleau, D., Jochem, T.: Towards automated artificial evolution for computer-generated images. Connection Sci. 6(2–3), 325–354 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffan Ianigro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ianigro, S., Bown, O. (2016). Plecto: A Low-Level Interactive Genetic Algorithm for the Evolution of Audio. In: Johnson, C., Ciesielski, V., Correia, J., Machado, P. (eds) Evolutionary and Biologically Inspired Music, Sound, Art and Design. EvoMUSART 2016. Lecture Notes in Computer Science(), vol 9596. Springer, Cham. https://doi.org/10.1007/978-3-319-31008-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31008-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31007-7

  • Online ISBN: 978-3-319-31008-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics