Skip to main content

Predicting Future Effects of Multiple Drivers of Extinction Risk in Peru’s Endemic Primate Fauna

  • Chapter
  • First Online:

Part of the book series: Developments in Primatology: Progress and Prospects ((DIPR))

Abstract

Multiple anthropogenic drivers of extinction risk in primates are increasing. The expansion of urban areas, road networks, and agricultural frontiers are threatening primates through habitat loss, fragmentation, and increased incidences of hunting. Man-made climate change is affecting habitat quality and availability, particularly in rare ecosystems. Three of Peru’s endemic primate species, the yellow-tailed woolly monkey (Lagothrix flavicauda), the San Martin titi monkey (Plecturocebus oenanthe Sensu, Byrne H, Rylands AB, Carneiro JC, Alfaro JWL, Bertuol F, da Silva MNF, Messias M et al. (2016) Phylogenetic relationships of the New World titi monkeys (Callicebus): first appraisal of taxonomy based on molecular evidence. Frontiers in Zoology 13:1–26) and the Peruvian night monkey (Aotus miconax), have naturally restricted distributions in the foothills of the country’s northeastern Andes. Montane forest habitat in this area not only suffers from the highest rates of deforestation in the country but is also predicted to be among the most at risk areas from the effects of man-made climate change. Using data from extensive published and unpublished field surveys, this study modeled the species’ historical, current, and future distributions. To best estimate the effects of multiple drivers of extinction risk, I used models of future climate change scenarios coupled with predications of expanding human settlement and hunting over multiple timescales. Results of these models predict a reduction in niche availability for A. miconax and L. flavicauda and an increase in niche availability for P. oenanthe. In all cases predicted habitat loss was less than in previous studies. However, when taking into account anthropogenic disturbance, habitat loss is much more severe. I suggest that predictive modeling is a useful tool for conservation, but should always use the most up-to-date data and results should be interpreted with caution based on expert knowledge of the species and area. Future climate change is predicted to increase threats to many species but deforestation and hunting will remain the major threats for many primates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alfaro, J. W. L., Boubli, J. P., Olson, L. E., Di Fiore, A., Wilson, B., Gutiérrez-Espeleta, G. A., et al. (2012a). Explosive Pleistocene range expansion leads to widespread Amazonian sympatry between robust and gracile capuchin monkeys. Journal of Biogeography, 39(2), 272–288.

    Article  Google Scholar 

  • Alfaro, J. W. L., Silva, J. D. E., & Rylands, A. B. (2012b). How different are robust and gracile capuchin monkeys? An argument for the use of Sapajus and Cebus. American Journal of Primatology, 74(4), 273–286.

    Article  PubMed  Google Scholar 

  • Allgas, N., Shanee, S., Peralta, A., & Shanee, N. (2014). Yellow-tailed woolly monkey (Oreonax flavicauda: Humboldt 1812) altitudinal range extension, Uchiza, Peru. Neotropical Primates, 21(2), 207–207.

    Article  Google Scholar 

  • Anderson, R. P., & Raza, A. (2010). The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: Preliminary tests with montane rodents (genus Nephelomys) in Venezuela. Journal of Biogeography, 37, 1378–1393.

    Article  Google Scholar 

  • Andrén, H. (1994). Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: A review. Oikos, 71(3), 355–366.

    Article  Google Scholar 

  • Aquino, R., & Encarnación, F. (1994). Los primates del Peru. Primate Report, 40, 1–130.

    Google Scholar 

  • Ayres, J. M., & Clutton-Brock, T. H. (1992). River boundaries and species range size in Amazonian primates. The American Naturalist, 140(3), 531–537.

    Article  CAS  PubMed  Google Scholar 

  • Bergl, R. A., Bradley, B. J., Nsubuga, A., & Vigilant, L. (2008). Effects of habitat fragmentation, population size and demographic history on genetic diversity: The cross river gorilla in a comparative context. American Journal of Primatology, 70(9), 848–859.

    Article  PubMed  Google Scholar 

  • Bertin, R. I. (2008). Plant phenology and distribution in relation to recent climate change. The Journal of the Torrey Botanical Society, 135(1), 126–146.

    Article  Google Scholar 

  • Bocedi, G., Palmer, S. C. F., Pe’er, G., Heikkinen, R. K., Matsinos, Y. G., Watts, K., et al. (2014). RangeShifter: A platform for modelling spatial eco-evolutionary dynamics and species’ responses to environmental changes. Methods in Ecology and Evolution, 5(4), 388–396.

    Article  Google Scholar 

  • Bonan, G. B. (2013). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320(5882), 1444–1449.

    Article  CAS  Google Scholar 

  • Boria, R. A., Olson, L. E., Goodman, S. M., & Anderson, R. P. (2014). Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling, 275, 73–77.

    Article  Google Scholar 

  • Boubli, J. P., Rylands, A. B., Farias, I. P., Alfaro, M. E., & Alfaro, J. L. (2012). Cebus phylogenetic relationships: A preliminary reassessment of the diversity of the untufted capuchin monkeys. American Journal of Primatology, 74(4), 381–393.

    Article  PubMed  Google Scholar 

  • Bóveda-Penalba, A., Vermeer, J., Rodrigo, F., & Guerra-Vásquez, F. (2009). Preliminary report on the distribution of (Callicebus oenanthe) on the eastern feet of the Andes. International Journal of Primatology, 30(3), 467–480.

    Article  Google Scholar 

  • Brenneman, R. A., Johnson, S. E., Bailey, C. A., Ingraldi, C., Delmore, K. E., Wyman, T. M., et al. (2012). Population genetics and abundance of the endangered grey-headed lemur Eulemur cinereiceps in south-east Madagascar: Assessing risks for fragmented and continuous populations. Oryx, 46(2), 298–307.

    Article  Google Scholar 

  • Brown, J. L. (2014). SDMtoolbox: A python-based GIS toolkit for landscape genetic biogeographic and species distribution model analyses. Methods in Ecology and Evolution, 5(7), 694–700.

    Article  Google Scholar 

  • Bubb, P., May, I., Miles, L., & Sayer, J. (2004). Cloud forest agenda. Cambridge, England: United Nations Environment Programme—World Conservation Monitoring Centre.

    Google Scholar 

  • Buckingham, F., & Shanee, S. (2009). Conservation priorities for the Peruvian yellow-tailed woolly monkey (Oreonax flavicauda): A GIS risk assessment and gap analysis. Primate Conservation, 24(1), 65–71.

    Google Scholar 

  • Campbell, N. (2011). The Peruvian night monkey, Aotus miconax, a comparative study of occupancy between Cabeza del Toro and Cordillera de Colan. Oxford, England: Oxford Brookes University.

    Google Scholar 

  • Cantú-Salazar, L., Orme, C. D., Rasmussen, P., Blackburn, T., & Gaston, K. (2013). The performance of the global protected area system in capturing vertebrate geographic ranges. Biodiversity and Conservation, 22(4), 1033–1047.

    Article  Google Scholar 

  • Cardillo, M., Mace, G. M., Jones, K. E., Bielby, J., Bininda-Emonds, O. R. P., Sechrest, W., et al. (2005). Multiple causes of high extinction risk in large mammal species. Science, 309(5738), 1239–1241.

    Article  CAS  PubMed  Google Scholar 

  • Cayuela, L., Benayas, J. M. R., & Echeverría, C. (2006). Clearance and fragmentation of tropical montane forests in the highlands of Chiapas, Mexico (1975–2000). Forest Ecology and Management, 226(1–3), 208–218.

    Article  Google Scholar 

  • Chan, L. M., Brown, J. L., & Yoder, A. D. (2011). Integrating statistical genetic and geospatial methods brings new power to phylogeography. Molecular Phylogenetics and Evolution, 59(2), 523–537.

    Article  PubMed  Google Scholar 

  • Chapman, C. A., Speirs, M. L., Gillespie, T. R., Holland, T., & Austad, K. M. (2006). Life on the edge: Gastrointestinal parasites from the forest edge and interior primate groups. American Journal of Primatology, 68(4), 397–409.

    Article  PubMed  Google Scholar 

  • de Souza Muñoz, M. E., De Giovanni, R., de Siqueira, M. F., Sutton, T., Brewer, P., Pereira, R. S., et al. (2011). OpenModeller: A generic approach to species’ potential distribution modelling. GeoInformatica, 15(1), 111–135.

    Article  Google Scholar 

  • deLuycker, A. M. (2007). Notes on the yellow-tailed woolly monkey (Oreonax flavicauda) and its status in the protected forest of Alto Mayo, Northern Peru. Primate Conservation, 22(1), 41–47.

    Article  Google Scholar 

  • deLuycker, A. M. (2007). The ecology and behavior of the Rio Mayo titi monkey (Callicabus oenanthe) in the Alto Mayo, Northern Peru. Unpublished Ph.D. dissertation, Washington University in St Louis.

    Google Scholar 

  • Dore, M. H. I. (2005). Climate change and changes in global precipitation patterns: What do we know? Environment International, 31(8), 1167–1181.

    Article  PubMed  Google Scholar 

  • Dourojeanni, M. (1989). Environmental impact of coca cultivation and cocaine production in the amazon region of Peru. In F. R. Len & R. Castro de la Mata (Eds.), Pasta bisica de cocaina: Un estudio multidisciplinario (pp. 281–300). Lima, Peru: CEDRO.

    Google Scholar 

  • Dreyfus, P. G. (1999). When all the evils come together. Journal of Contemporary Criminal Justice, 15(4), 370–396.

    Article  Google Scholar 

  • Durán, A. P., Rauch, J., & Gaston, K. J. (2013). Global spatial coincidence between protected areas and metal mining activities. Biological Conservation, 160, 272–278.

    Article  Google Scholar 

  • Elith, J., & Graham, C. H. (2009). Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models. Ecography, 32(1), 66–77.

    Article  Google Scholar 

  • Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., et al. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129–151.

    Article  Google Scholar 

  • Ellenbogen, G. G. (1999). The shining path: A history of the millenarian war in Peru. Chapell Hill: University of North Carolina Press.

    Google Scholar 

  • Estrada, A., & Coates-Estrada, R. (1996). Tropical rain forest fragmentation and wild populations of primates at Los Tuxtlas, Mexico. International Journal of Primatology, 17(5), 759–783.

    Article  Google Scholar 

  • Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34, 487–515.

    Article  Google Scholar 

  • Fearnside, P. M. (1983). Land-use trends in the Brazilian Amazon region as factors in accelerating deforestation. Environmental Conservation, 10(02), 141–148.

    Article  Google Scholar 

  • Feeley, K. J., & Silman, M. R. (2010). Land-use and climate change effects on population size and extinction risk of Andean plants. Global Change Biology, 16(12), 3215–3222.

    Article  Google Scholar 

  • Fjeldså, J., Álvarez, M. D., Lazcano, J. M., & León, B. (2005). Illicit crops and armed conflict as constraints on biodiversity conservation in the Andes region. AMBIO, 34(3), 205–211.

    Article  PubMed  Google Scholar 

  • Fjeldså, J., Lambin, E., & Mertens, B. (1999). Correlation between endemism and local ecoclimatic stability documented by comparing Andean bird distributions and remotely sensed land surface data. Ecography, 22(1), 63–78.

    Article  Google Scholar 

  • Foster, P. (2001). The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews, 55(1–2), 73–106.

    Article  Google Scholar 

  • Gálvez, N., Hernández, F., Laker, J., Gilabert, H., Petitpas, R., Bonacic, C., et al. (2013). Forest cover outside protected areas plays an important role in the conservation of the Vulnerable guiña Leopardus guigna. Oryx, 47(02), 251–258.

    Article  Google Scholar 

  • Garland, E. B. (1995). The social and economic causes of deforestation in the Peruvian Amazon basin: Natives and colonists. In M. Painter & W. H. Durham (Eds.), The social causes of environmental destruction in Latin America (pp. 217–246). Ann Arbor: University of Michigan Press.

    Google Scholar 

  • Geldmann, J., Barnes, M., Coad, L., Craigie, I. D., Hockings, M., & Burgess, N. D. (2013). Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biological Conservation, 161, 230–238.

    Article  Google Scholar 

  • Gillespie, T. R., Chapman, C. A., & Greiner, E. C. (2005). Effects of logging on gastrointestinal parasite infections and infection risk in African primates. Journal of Applied Ecology, 42(4), 699–707.

    Article  Google Scholar 

  • Goldberg, T. L., Gillespie, T. R., Rwego, I. B., Estoff, E. L., & Chapman, C. A. (2008). Forest fragmentation as cause of bacterial transmission among nonhuman primates, humans, and livestock, Uganda. Emerging Infectious Diseases, 14(9), 1375–1382.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodchild, M. F., Steyaert, L. T., Parks, B. O., & Johnston, C. (1996). GIS and environmental modeling: Progress and research issues. New York: Wiley.

    Google Scholar 

  • Graham, C. H., Elith, J., Hijmans, R. J., Guisan, A., Peterson, A. T., Loiselle, B. A., et al. (2008). The influence of spatial errors in species occurrence data used in distribution models. Journal of Applied Ecology, 45(1), 239–247.

    Article  Google Scholar 

  • Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8(9), 993–1009.

    Article  Google Scholar 

  • Guisan, A., Zimmermann, N. E., Elith, J., Graham, C. H., Phillips, S., & Peterson, A. T. (2007). What matters for predicting the occurrences of trees: Techniques, data, or species’ characteristics? Ecological Monographs, 77(4), 615–630.

    Article  Google Scholar 

  • Guo, Q., & Liu, Y. (2010). ModEco: An integrated software package for ecological niche modeling. Ecography, 33(4), 637–642.

    Article  Google Scholar 

  • Hall, J., Burgess, N. D., Lovett, J., Mbilinyi, B., & Gereau, R. E. (2009). Conservation implications of deforestation across an elevational gradient in the Eastern Arc Mountains, Tanzania. Biological Conservation, 142(11), 2510–2521.

    Article  Google Scholar 

  • Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., et al. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850–853.

    Article  CAS  PubMed  Google Scholar 

  • Herzog, S. K. (2011). Climate change and biodiversity in the tropical Andes. São José dos Campos, Brazil: Inter-American Institute for Global Change Research.

    Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978.

    Article  Google Scholar 

  • Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R. A., Feddema, J., Fischer, G., et al. (2011). Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109(1-2), 117–161.

    Article  Google Scholar 

  • INEI. (2008). Instituto Nacional de Estadistica e Informatica (INEI). Retrieved November 20, 2009, from http://www.inei.gob.pe/.

  • INRENA. (2005). Mapa de deforestacion de la Amazonia Peruana—2000. Lima, Peru: Instituto Nacional de recursos Naturales.

    Google Scholar 

  • IUCN. (2013). IUCN Red List of Threatened Species. Retrieved March 5, 2014, from www.redlist.org.

  • Jerozolimski, A., & Peres, C. A. (2003). Bringing home the biggest bacon: A cross-site analysis of the structure of hunter-kill profiles in neotropical forests. Biological Conservation, 111(3), 415–425.

    Article  Google Scholar 

  • Kent, R. B. (1993). Geographical dimensions of the shining path insurgency in Peru. Geographical Review, 83(4), 441–454.

    Article  Google Scholar 

  • Krausmann, F., Erb, K.-H., Gingrich, S., Haberl, H., Bondeau, A., Gaube, V., et al. (2013). Global human appropriation of net primary production doubled in the 20th century. Proceedings of the National Academy of Sciences, 110(25), 10324–10329.

    Article  CAS  Google Scholar 

  • Kriticos, D. J., Webber, B. L., Leriche, A., Ota, N., Macadam, I., Bathols, J., et al. (2012). CliMond: Global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution, 3(1), 53–64.

    Article  Google Scholar 

  • Laurance, W. F., & Williamson, G. B. (2001). Positive feedbacks among forest fragmentation, drought, and climate change in the Amazon. Conservation Biology, 15(6), 1529–1535.

    Article  Google Scholar 

  • Lenoir, J., Gégout, J. C., Marquet, P. A., de Ruffray, P., & Brisse, H. (2008). A significant upward shift in plant species optimum elevation during the 20th century. Science, 320(5884), 1768–1771.

    Article  CAS  PubMed  Google Scholar 

  • Leo Luna, M. (1987). Primate conservation in Peru: A case study of the yellow-tailed woolly monkey. Primate Conservation, 8(1), 122–123.

    Google Scholar 

  • Leroux, S. J., & Kerr, J. T. (2013). Land development in and around protected areas at the Wilderness Frontier. Conservation Biology, 27(1), 166–176.

    Article  PubMed  Google Scholar 

  • Lewis, O. T. (2006). Climate change, species–area curves and the extinction crisis. Philosophical Transactions of the Royal Society, B: Biological Sciences, 361(1465), 163–171.

    Article  Google Scholar 

  • Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F., & Nepstad, D. (2011). The 2010 Amazon drought. Science, 331(6017), 554.

    Article  CAS  PubMed  Google Scholar 

  • Marsh, L. K., Chapman, C. A., Arroyo-Rodríguez, V., Cobden, A. K., Dunn, J. C., Gabriel, D., et al. (2013). Primates in fragments 10 years later: Once and future goals. In L. K. Marsh & C. A. Chapman (Eds.), Primates in fragments (pp. 503–523). New York: Springer.

    Chapter  Google Scholar 

  • Matauschek, C., Roos, C., & Heymann, E. W. (2011). Mitochondrial phylogeny of tamarins (Saguinus, Hoffmannsegg 1807) with taxonomic and biogeographic implications for the S. nigricollis species group. American Journal of Physical Anthropology, 144(4), 564–574.

    Article  PubMed  Google Scholar 

  • McCarty, J. P. (2001). Review: Ecological consequences of recent climate change. Conservation Biology, 15(2), 320–331.

    Article  Google Scholar 

  • Merckx, B., Steyaert, M., Vanreusel, A., Vincx, M., & Vananerbeke, J. (2011). Null models reveal preferential sampling, spatial autocorrelation and overfitting in habitat suitability modelling. Ecological Modelling, 222(3), 588–597.

    Article  CAS  Google Scholar 

  • Michalski, F., & Peres, C. A. (2005). Anthropogenic determinants of primate and carnivore local extinctions in a fragmented forest landscape of southern Amazonia. Biological Conservation, 124(3), 383–396.

    Article  Google Scholar 

  • Morales, E. (1986). Coca and cocaine economy and social change in the Andes of Peru. Economic Development and Cultural Change, 35(1), 143–161.

    Article  Google Scholar 

  • Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., et al. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747–756.

    Article  CAS  PubMed  Google Scholar 

  • Myers, N. (2003). Biodiversity hotspots revisited. BioScience, 53(10), 916–917.

    Article  Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858.

    Article  CAS  PubMed  Google Scholar 

  • Newbold, T., Hudson, L. N., Phillips, H. R. P., Hill, S. L. L., Contu, S., Lysenko, I., et al. (2014). A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures. Proceedings of the Royal Society of London. Series B, 281(1805), 1–10.

    Google Scholar 

  • Pacheco, V., Cadenillas, R., Salas, E., Tello, C., & Zeballos, H. (2009). Diversity and endemism of Peruvian mammals. Revista Peruana de Biología, 16(1), 5–32.

    Google Scholar 

  • Peres, C. A. (2001). Synergistic effects of subsistence hunting and habitat fragmentation on Amazonian forest vertebrates. Conservation Biology, 15(6), 1490–1505.

    Article  Google Scholar 

  • Peres, C. A., Gardner, T. A., Barlow, J., Zuanon, J., Michalski, F., Lees, A. C., et al. (2010). Biodiversity conservation in human-modified Amazonian forest landscapes. Biological Conservation, 143(10), 2314–2327.

    Article  Google Scholar 

  • Perz, S. G., Aramburú, C., & Bremner, J. (2005). Population, land use and deforestation in the Pan Amazon basin: A comparison of Brazil, Bolivia, Colombia, Ecuador, Perú and Venezuela. Environment, Development and Sustainability, 7(1), 23–49.

    Article  Google Scholar 

  • Peterson, A. T., Papeş, M., & Eaton, M. (2007). Transferability and model evaluation in ecological niche modeling: A comparison of GARP and Maxent. Ecography, 30(4), 550–560.

    Article  Google Scholar 

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259.

    Article  Google Scholar 

  • Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., et al. (2009). Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecological Applications, 19, 181–197.

    Article  PubMed  Google Scholar 

  • Pielke, R. A., Marland, G., Betts, R. A., Chase, T. N., Eastman, J. L., Niles, J. O., et al. (2002). The influence of land-use change and landscape dynamics on the climate system: Relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 360(1797), 1705–1719.

    Article  CAS  Google Scholar 

  • Porter-Bolland, L., Ellis, E. A., Guariguata, M. R., Ruiz-Mallén, I., Negrete-Yankelevich, S., & Reyes-García, V. (2012). Community managed forests and forest protected areas: An assessment of their conservation effectiveness across the tropics. Forest Ecology and Management, 268, 6–17.

    Article  Google Scholar 

  • PROCLIM/CONAM. (2005). Informe del proyecto proclim—Conam. Lima, Peru: INRENA.

    Google Scholar 

  • Purvis, A., Gittleman, J. L., Cowlishaw, G., & Mace, G. M. (2000a). Predicting extinction risk in declining species. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1456), 1947–1952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purvis, A., Jones, K. E., & Mace, G. M. (2000b). Extinction. BioEssays, 22(12), 1123–1133.

    Article  CAS  PubMed  Google Scholar 

  • Radosavljevic, A., & Anderson, R. P. (2014). Making better Maxent models of species distributions: Complexity, overfitting, and evaluation. Journal of Biogeography, 41, 629–643.

    Article  Google Scholar 

  • Raper, S. (2012). Climate modelling: IPCC gazes into the future. Nature Climate Change, 2(4), 232–233.

    Article  Google Scholar 

  • Reategui, F., & Martinez, P. (2007). Feorestal. Zonificacion ecologica economica del departamento de Amazonas. Lima, Peru: Instituto de Investigaciones de la Amazonia Peruana (IIAP).

    Google Scholar 

  • Robles Gil, P., Seligmann, P. A., Ford, H., & Mittermeier, R. A. (2004). Hotspots revisited. Mexico City, Mexico: CEMEX.

    Google Scholar 

  • Rodrigues, A. S. L., Andelman, S. J., Bakarr, M. I., Boitani, L., Brooks, T. M., Cowling, R. M., et al. (2003). Global gap analysis: Towards a representative network of protected areas. Advances in Applied Biodiversity Science, 5, 100.

    Google Scholar 

  • Rogelj, J., Meinshausen, M., & Knutti, R. (2012). Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nature Climate Change, 2(4), 248–253.

    Article  Google Scholar 

  • Rowe, N., & Myers, M. (2012). All the worlds' primates. Retrieved May 28, 2012. from www.alltheworldsprimates.org.

  • Sanchez-Cuervo, A. M., & Aide, T. M. (2013). Identifying hotspots of deforestation and reforestation in Colombia (2001–2010): Implications for protected areas. Ecosphere, 4(11), 143.

    Article  Google Scholar 

  • Sanchez-Larranega, J., & Shanee, S. (2012). Parásitos gastrointestinales en el mono choro cola amarilla (Oreonax flavicauda) y el mono nocturno Andino (Aotus miconax) en Amazonas, Perú. Neotropical Primates, 19(1), 38–41.

    Article  Google Scholar 

  • Schjellerup, I. (2000). La Morada. A case study on the impact of human pressure on the environment in the Ceja de Selva, northeastern Peru. AMBIO, 29, 451–454.

    Article  Google Scholar 

  • Seiferling, I. S., Proulx, R., Peres‐Neto, P. R., Fahrig, L., & Messier, C. (2012). Measuring protected-area isolation and correlations of isolation with land-use intensity and protection status [Medición del Aislamiento de Áreas Protegidas y Correlaciones del Aislamiento con la Intensidad de Uso del Suelo y el Estatus de Protección]. Conservation Biology, 26(4), 610–618.

    Article  PubMed  Google Scholar 

  • Shanee, S. (2011). Distribution survey and threat assessment of the yellow-tailed woolly monkey (Oreonax flavicauda, Humboldt 1812), Northeastern Peru. International Journal of Primatology, 32(3), 691–707.

    Article  Google Scholar 

  • Shanee, N. (2012a). The dynamics of threats and conservation efforts for the tropical Andes hotspot in Amazonas and San Martin, Peru. Canterbury, England: Kent University.

    Google Scholar 

  • Shanee, N. (2012b). Trends in local wildlife hunting, trade and control in the Tropical Andes Hotspot, Northeastern Peru. Endangered Species Research, 19(2), 177–186.

    Article  Google Scholar 

  • Shanee, S. (2013). Conservation and ecology of Andean primates in Peru. Unpublished Ph.D. dissertation, Oxford Brookes University, Oxford.

    Google Scholar 

  • Shanee, S., Allgas, N., & Shanee, N. (2013a). Preliminary observations on the behavior and ecology of the Peruvian night monkey (Aotus miconax: Primates) in a remnant cloud forest patch, north eastern Peru. Tropical Conservation Science, 6(1), 138–148.

    Google Scholar 

  • Shanee, S., Allgas, N., Shanee, N., & Campbell, N. (2015). Distribution, ecological niche modelling and conservation assessment of the Peruvian Night Monkey (Mammakia: Primates: Aotidae: Aotus miconax Thomas, 1927) in Northeastern Peru, with notes on the distributions of Aotus spp. Journal of Threatened Taxa, 7(3), 6947–6964.

    Article  Google Scholar 

  • Shanee, S., Shanee, N., & Allgas-Marchena, N. (2013b). Primate surveys in the Maranon-Huallaga landscape, Northern Peru with notes on conservation. Primate Conservation, 27, 3–11.

    Article  Google Scholar 

  • Shanee, S., Shanee, N., Campbell, N., & Allgas, N. (2013c). Biogeography and conservation of Andean primates in Peru. In N. B. Grow, S. Gursky-Doyen, & A. Krzton (Eds.), High altitude primates (pp. 63–83). New York: Springer.

    Google Scholar 

  • Shanee, N., Shanee, S., & Horwich, R. H. (2014). Effectiveness of locally run conservation initiatives in north-east Peru. Oryx, 49, 239–247.

    Google Scholar 

  • Shanee, S., Tello-Alvarado, J. C., Vermeer, J., & Boveda-Penalba, A. J. (2011). GIS risk assessment and GAP analysis for the Andean titi monkey (Callicebus oenanthe). Primate Conservation, 26(1), 17–23.

    Article  Google Scholar 

  • Shcheglovitova, M., & Anderson, R. P. (2013). Estimating optional complexity for ecological niche models: A jackknife approach for species with small sample sizes. Ecological Modelling, 269, 9–17.

    Article  Google Scholar 

  • Skidmore, A. (2004). Environmental modelling with GIS and remote sensing. London: Taylor and Francis.

    Google Scholar 

  • Still, C. J., Foster, P. N., & Schneider, S. H. (1999). Simulating the effects of climate change on tropical montane cloud forests. Nature, 398(6728), 608–610.

    Article  CAS  Google Scholar 

  • Suárez-Seoane, S., Virgós, E., Terroba, O., Pardavila, X., & Barea-Azcón, J. M. (2014). Scaling of species distribution models across spatial resolutions and extents along a biogeographic gradient. The case of the Iberian mole Talpa occidentalis. Ecography, 37(3), 279–292.

    Article  Google Scholar 

  • Swenson, J. J., Young, B. E., Beck, S., Comer, P., Cordova, J. H., Dyson, J., et al. (2012). Plant and animal endemism in the eastern Andean slope: Challenges to conservation. BMC Ecology, 12(1), 1–19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., et al. (2004). Extinction risk from climate change. Nature, 427(6970), 145–148.

    Article  CAS  PubMed  Google Scholar 

  • Thuiller, W., Lafourcade, B., Engler, R., & Araujo, M. B. (2009). BIOMOD—A platform for ensemble forecasting of species distributions. Ecography, 32, 369–373.

    Article  Google Scholar 

  • Tilman, D., Reich, P. B., Knops, J., Wedin, D., Mielke, T., & Lehman, C. (2001). Diversity and productivity in a long-term grassland experiment. Science, 294(5543), 843–845.

    Article  CAS  PubMed  Google Scholar 

  • Vale, C. G., Tarroso, P., & Brito, J. C. (2014). Predicting species distribution at range margins: Testing the effects of study area extent, resolution and threshold selection in the Sahara–Sahel transition zone. Diversity and Distributions, 20(1), 20–33.

    Article  Google Scholar 

  • van Aalst, M. K. (2006). The impacts of climate change on the risk of natural disasters. Disasters, 30(1), 5–18.

    Article  PubMed  Google Scholar 

  • Veech, J. A., & Crist, T. O. (2007). Habitat and climate heterogeneity maintain beta-diversity of birds among landscapes within ecoregions. Global Ecology and Biogeography, 16(5), 650–656.

    Article  Google Scholar 

  • Veloz, S. D. (2009). Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. Journal of Biogeography, 36(12), 2290–2299.

    Article  Google Scholar 

  • Vermeer, J., Tello-Alvarado, J. C., Moreno-Moreno, S., & Guerra-Vásquez, F. (2011). Extension of the geographical range of White-browed Titi monkeys (Callicebus discolor) and evidence for sympatry with San Martin Titi monkeys (Callicebus oenanthe). International Journal of Primatology, 32(4), 924–930.

    Article  Google Scholar 

  • Walther, G., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., et al. (2002). Ecological responses to recent climate change. Nature, 416(6879), 389–395.

    Article  CAS  PubMed  Google Scholar 

  • Warren, D. L., Glor, R. E., & Turelli, M. (2010). ENMTools: A toolbox for comparative studies of environmental niche models. Ecography, 33(3), 607–611.

    Google Scholar 

  • Wilson, D. E., Mittermeier, R. A., Ruff, S., Martinez-Vilalta, A., & Llobet, T. (2013). Handbook of the mammals of the world: Primates. Arrington, VA: Buteo Books.

    Google Scholar 

  • Wyman, M. S., & Stein, T. V. (2009). Modeling social and land-use/land-cover change data to assess drivers of smallholder deforestation in Belize. Applied Geography, 30(3), 329–342.

    Article  Google Scholar 

  • Wyman, M. S., Stein, T. V., Southworth, J., & Horwich, R. H. (2011). Does population increase equate to conservation success? Forest fragmentation and conservation of the black howler monkey. Conservation and Society, 9(3), 216–228.

    Article  Google Scholar 

  • Young, K. R. (1996). Threats to biological diversity caused by coca/cocaine deforestation in Peru. Environmental Conservation, 23(1), 7–15.

    Article  Google Scholar 

Download references

Acknowledgements

I wish to thank Noga Shanee, Nestor Allgas, Alejandra Zamora, and everyone at Neotropical Primate Conservation for their help in preparing this study. Also Noe Rojas, Ana Peralta, and Fernando Guerra for their help in the field as well as Julio Tello, Antonio Boveda, and Jan Vermeer from Proyecto Mono Tocon, for their previous field studies without which modeling would not have been possible. Data used for this work was gathered, thanks to funding from Neotropical Primate Conservation and from Community Conservation, Primate Conservation Inc, Margot Marsh Biodiversity Foundation, National Geographic Society, International Primate Protection League, Primate Society of Great Britain, and American Society of Primatologists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Shanee M.Sc., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shanee, S. (2016). Predicting Future Effects of Multiple Drivers of Extinction Risk in Peru’s Endemic Primate Fauna. In: Waller, M. (eds) Ethnoprimatology. Developments in Primatology: Progress and Prospects. Springer, Cham. https://doi.org/10.1007/978-3-319-30469-4_18

Download citation

Publish with us

Policies and ethics