Skip to main content

Dynamics, Synchronization and SPICE Implementation of a Memristive System with Hidden Hyperchaotic Attractor

  • Chapter
  • First Online:

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 337))

Abstract

The realization of memristor in nanoscale size has received considerate attention recently because memristor can be applied in different potential areas such as spiking neural network, high-speed computing, synapses of biological systems, flexible circuits, nonvolatile memory, artificial intelligence, modeling of complex systems or low power devices and sensing. Interestingly, memristor has been used as a nonlinear element to generate chaos in memristive system. In this chapter, a new memristive system is proposed. The fundamental dynamics properties of such memristive system are discovered through equilibria, Lyapunov exponents, and Kaplan–York dimension. Especially, hidden attractor and hyperchaos can be observed in this new system. Moreover, synchronization for such system is studied and simulation results are presented showing the accuracy of the introduced synchronization scheme. An electronic circuit modelling such hyperchaotic memristive system is also reported to verify its feasibility.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lorenz EN (1963) Deterministic non-periodic flow. J Atmos Sci 20:130–141

    Article  Google Scholar 

  2. Azar AT, Vaidyanathan S (2015) Chaos modeling and control systems design. Springer, Germany

    Google Scholar 

  3. Azar AT, Vaidyanathan S (2015) Computational intelligence applications in modeling and control. Springer, Germany

    Google Scholar 

  4. Azar AT, Vaidyanathan S (2015) Handbook of research on advanced intelligent control engineering and automation. IGI Global, USA

    Google Scholar 

  5. Chen G, Yu X (2003) Chaos control: theory and applications. Springer, Berlin

    Book  MATH  Google Scholar 

  6. Chen GR (1999) Controlling chaos and bifurcations in engineering systems. CRC Press, Boca Raton

    Google Scholar 

  7. Sprott JC (2003) Chaos and times-series analysis. Oxford University Press, Oxford

    MATH  Google Scholar 

  8. Strogatz SH (1994) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Perseus Books, Massachusetts

    Google Scholar 

  9. Yalcin ME, Suykens JAK, Vandewalle J (2005) Cellular neural networks, multi-scroll chaos and synchronization. World Scientific, Singapore

    MATH  Google Scholar 

  10. Rössler OE (1976) An equation for continuous chaos. Phys Lett A 57:397–398

    Article  Google Scholar 

  11. Arneodo A, Coullet P, Tresser C (1981) Possible new strange attractors with spiral structure. Comm Math Phys 79:573–579

    Article  MathSciNet  MATH  Google Scholar 

  12. Lü J, Chen G (2002) A new chaotic attractor coined. Int J Bif Chaos 12:659–661

    Article  MathSciNet  MATH  Google Scholar 

  13. Vaidyanathan S (2013) A new six-term 3-D chaotic system with an exponential nonlineariry. Far East J Math Sci 79:135–143

    MATH  Google Scholar 

  14. Barnerjee T, Biswas D, Sarkar BC (2012) Design and analysis of a first order time-delayed chaotic system. Nonlinear Dyn 70:721–734

    Article  MathSciNet  Google Scholar 

  15. Pham V-T, Volos C, Vaidyanathan S (2015b) Multi-scroll chaotic oscillator based on a first-order delay differential equation. In: Azar AT, Vaidyanathan S (eds) Chaos modelling and control systems design, vol 581., Studies in computational intelligenceSpringer, Germany, pp 59–72

    Google Scholar 

  16. Vaidyanathan S, Azar AT (2015b) Analysis, control and synchronization of a nine-term 3-D novel chaotic system. In: Azar AT, Vaidyanathan S (eds) Chaos modelling and control systems design, vol 581., Studies in computational intelligenceSpringer, Germany, pp 19–38

    Google Scholar 

  17. Yalcin ME, Suykens JAK, Vandewalle J (2004) True random bit generation from a double-scroll attractor. IEEE Trans Circuits Syst I Regul Papers 51:1395–1404

    Article  MathSciNet  Google Scholar 

  18. Volos CK, Kyprianidis IM, Stouboulos IN (2012) A chaotic path planning generator for autonomous mobile robots. Robot Auto Syst 60:651–656

    Article  Google Scholar 

  19. Hoang TM, Nakagawa M (2008) A secure communication system using projective-lag and/or projective-anticipating synchronizations of coupled multidelay feedback systems. Chaos Solitions Fractals 38:1423–1438

    Article  Google Scholar 

  20. Rössler OE (1979) An equation for hyperchaos. Phys Lett A 71:155–157

    Article  MathSciNet  MATH  Google Scholar 

  21. Vaidyanathan S, Azar AT (2015a) Analysis and control of a 4-D novel hyperchaotic system. In: Azar AT, Vaidyanathan S (eds) Chaos modeling and control systems design, vol 581., Studies in computational intelligenceSpringer, Germany, pp 19–38

    Google Scholar 

  22. Sadoudi S, Tanougast C, Azzaz MS, Dandache A (2013) Design and FPGA implementation of a wireless hyperchaotic communication system for secure realtime image transmission. EURASIP J Image Video Process 943:1–18

    Google Scholar 

  23. Udaltsov VS, Goedgebuer JP, Larger L, Cuenot JB, Levy P, Rhodes WT (2003) Communicating with hyperchaos: the dynamics of a DNLF emitter and recovery of transmitted information. Optics Spectrosc 95:114–118

    Article  Google Scholar 

  24. Grassi G, Mascolo S (1999) A system theory approach for designing cryptosystems based on hyperchaos. IEEE Trans Cir Sys I: Fund Theory Appl 46:1135–1138

    Article  MATH  Google Scholar 

  25. Huang Y, Yang X (2006) Hyperchaos and bifurcation in a new class of four-dimensional hopfield neural networks. Neurocomputing 69:1787–1795

    Article  Google Scholar 

  26. Vicente R, Dauden J, Colet P, Toral R (2005) Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop. IEEE J Quantum Electr 41:541–548

    Article  Google Scholar 

  27. Buscarino A, Fortuna L, Frasca M, Gambuzza LV (2012) A chaotic circuit based on Hewlett-Packard memristor. Chaos 22:023136

    Google Scholar 

  28. Fitch AL, Yu D, Iu HHC, Sreeram V (2012) Hyperchaos in an memristor-based modified canonical chua’s circuit. Int J Bif Chaos 22:1250133–1250138

    Article  MATH  Google Scholar 

  29. Buscarino A, Fortuna L, Frasca M, Gambuzza LV (2012) A gallery of chaotic oscillators based on hp memristor. Int J Bif Chaos 22:1330014–1330015

    Article  MathSciNet  MATH  Google Scholar 

  30. Li Q, Hu S, Tang S, Zeng G (2014) Hyperchaos and horseshoe in a 4D memristive system with a line of equilibria and its implementation. Int J Cir Theory Appl 42:1172–1188

    Article  Google Scholar 

  31. Li Q, Zeng H, Li J (2015) Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria. Nonlinear Dyn 79:2295–2308

    Article  MathSciNet  Google Scholar 

  32. Pham VT, Volos CK, Vaidyanathan S, Le TP, Vu VY (2015c) A memristor-based hyperchaotic system with hidden attractors: dynamics, sychronization and circuital emulating. J Eng Sci Tech Rev 8:205–214

    Google Scholar 

  33. Leonov GA, Kuznetsov NV (2013) Hidden attractors in dynamical systems: from hidden oscillation in Hilbert-Kolmogorov, Aizerman and Kalman problems to hidden chaotic attractor in Chua circuits. Int J Bifurc Chaos 23:1330002

    Article  MathSciNet  MATH  Google Scholar 

  34. Leonov GA, Kuznetsov NV, Kuznetsova OA, Seldedzhi SM, Vagaitsev VI (2011) Hidden oscillations in dynamical systems. Trans Syst Contr 6:54–67

    Google Scholar 

  35. Jafari S, Sprott JC (2013) Simple chaotic flows with a line equilibrium. Chaos Solitons Fractals 57:79–84

    Article  MathSciNet  Google Scholar 

  36. Kuznetsov NV, Leonov GA, Seledzhi SM (2011) Hidden oscillations in nonlinear control systems. IFAC Proc 18:2506–2510

    Google Scholar 

  37. Pham V-T, Jafari S, Volos C, Wang X, Golpayegani SMRH (2014a) Is that really hidden? The presence of complex fixed-points in chaotic flows with no equilibria. Int J Bifur Chaos 24:1450146

    Article  MATH  Google Scholar 

  38. Pham V-T, Volos CK, Jafari S, Wei Z, Wang X (2014b) Constructing a novel no-equilibrium chaotic system. Int J Bifurc Chaos 24:1450073

    Article  MathSciNet  MATH  Google Scholar 

  39. Sharma PR, Shrimali MD, Prasad A, Kuznetsov NV, Leonov GA (2015) Control of multistability in hidden attractors. Eur Phys J Special Topics 224:1485–1491

    Article  Google Scholar 

  40. Leonov GA, Kuznetsov NV, Vagaitsev VI (2012) Hidden attractor in smooth Chua system. Phys D 241:1482–1486

    Google Scholar 

  41. Leonov GA, Kuznetsov NV, Kiseleva MA, Solovyeva EP, Zaretskiy AM (2014) Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor. Nonlinear Dyn 77:277–288

    Article  Google Scholar 

  42. Leonov GA, Kuznetsov NV (2011) Analytical-numerical methods for investigation of hidden oscillations in nonlinear control systems. IFAC Proc 18:2494–2505

    Google Scholar 

  43. Brezetskyi S, Dudkowski D, Kapitaniak T (2015) Rare and hidden attractors in van der pol-duffing oscillators. Eur Phys J Special Topics 224:1459–1467

    Article  Google Scholar 

  44. Jafari S, Sprott JC, Nazarimehr F (2015) Recent new examples of hidden attractors. Eur Phys J Special Topics 224:1469–1476

    Article  Google Scholar 

  45. Shahzad M, Pham VT, Ahmad MA, Jafari S, Hadaeghi F (2015) Synchronization and circuit design of a chaotic system with coexisting hidden attractors. Eur Phys J Special Topics 224:1637–1652

    Article  Google Scholar 

  46. Sprott JC (2015) Strange attractors with various equilibrium types. Eur Phys J Special Topics 224:1409–1419

    Article  Google Scholar 

  47. Vaidyanathan S, Volos CK, Pham VT (2015c) Analysis, control, synchronization and spice implementation of a novel 4-d hyperchaotic rikitake dynamo system without equilibrium. J Eng Sci Tech Rev 8:232–244

    Google Scholar 

  48. Vaidyanathan S, Pham VT, Volos CK (2015b) A 5-d hyperchaotic rikitake dynamo system with hidden attractors. Eur Phys J Special Topics 224:1575–1592

    Article  Google Scholar 

  49. Pham VT, Vaidyanathan S, Volos CK, Jafari S (2015a) Hidden attractors in a chaotic system with an exponential nonlinear term. Eur Phys J Special Topics 224:1507–1517

    Article  Google Scholar 

  50. Leonov GA, Kuznetsov NV (2011) Algorithms for searching for hidden oscillations in the Aizerman and Kalman problems. Dokl Math 84:475–481

    Google Scholar 

  51. Leonov GA, Kuznetsov NV, Vagaitsev VI (2011) Localization of hidden Chua’s attractors. Phys Lett A 375:2230–2233

    Google Scholar 

  52. Bao B, Liu Z, Xu B (2010) Dynamical analysis of memristor chaotic oscillator. Acta Physica Sinica 59:3785–3793

    Google Scholar 

  53. Muthuswamy B (2010) Implementing memristor based chaotic circuits. Int J Bif Chaos 20:1335–1350

    Article  MATH  Google Scholar 

  54. Sprott JC (2010) Elegant chaos: algebraically simple chaotic flows. World Scientific, Singapore

    Book  MATH  Google Scholar 

  55. Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponents from a time series. Phys D 16:285–317

    Google Scholar 

  56. Frederickson P, Kaplan JL, Yorke ED, York J (1983) The lyapunov dimension of strange attractors. J Differ Equ 49:185–207

    Article  MATH  Google Scholar 

  57. Boccaletti S, Kurths J, Osipov G, Valladares DL, Zhou CS (2002) The synchronization of chaotic systems. Phys Rep 366:1–101

    Article  MathSciNet  MATH  Google Scholar 

  58. Fortuna L, Frasca M (2007) Experimental synchronization of single-transistor-based chaotic circuits. Chaos 17:043118-1–043118-5

    Article  MathSciNet  MATH  Google Scholar 

  59. Kapitaniak T (1994) Synchronization of chaos using continuous control. Phys Rev E 50:1642–1644

    Google Scholar 

  60. Pecora LM, Carroll TL (1990) Synchronization in chaotic signals. Phys Rev A 64:821–824

    MathSciNet  MATH  Google Scholar 

  61. Buscarino A, Fortuna L, Frasca M (2009) Experimental robust synchronization of hyperchaotic circuits. Phys D 238:1917–1922

    Article  MATH  Google Scholar 

  62. Gamez-Guzman L, Cruz-Hernandez C, Lopez-Gutierrez R, Garcia-Guerrero EE (2009) Synchronization of Chua’s circuits with multi-scroll attractors: application to communication. Commun Nonlinear Sci Numer Simul 14:2765–2775

    Article  Google Scholar 

  63. Karthikeyan R, Vaidyanathan S (2014) Hybrid chaos synchronization of four-scroll systems via active control. J Electr Eng 65:97–103

    Google Scholar 

  64. Srinivasan K, Senthilkumar DV, Murali K, Lakshmanan M, Kurths J (2011) Synchronization transitions in coupled time-delay electronic circuits with a threshold nonlinearity. Chaos 21:023119

    Article  MATH  Google Scholar 

  65. Vaidyanathan S (2014) Analysis and adaptive synchronization of eight-term novel 3-D chaotic system with three quadratic nonlinearities. Eur Phys J Special Topics 223:1519–1529

    Article  Google Scholar 

  66. Vaidyanathan S, Azar AT (2015c) Anti-synchronization of identical chaotic systems using sliding mode control and an application to Vaidhyanathan-Madhavan chaotic systems. Stud Comput Intell 576:527–547

    Article  Google Scholar 

  67. Vaidyanathan S, Azar AT (2015d) Hybrid synchronization of identical chaotic systems using sliding mode control and an application to Vaidhyanathan chaotic systems. Stud Comput Intell 576:549–569

    Article  Google Scholar 

  68. Vaidyanathan S, Idowu BA, Azar AT (2015a) Backstepping controller design for the global chaos synchronization of Sprott’s jerk systems. Stud Comput Intell 581:39–58

    Article  Google Scholar 

  69. Zhu Q, Azar AT (2015) Complex system modelling and control through intelligent soft computations. Springer, Germany

    Book  MATH  Google Scholar 

  70. Woafo P, Kadji HGE (2004) Synchronized states in a ring of mutually coupled self-sustained electrical oscillators. Phys Rev E 69:046206

    Article  Google Scholar 

  71. Stefanski A, Perlikowski P, Kapitaniak T (2007) Ragged synchronizability of coupled oscillators. Phys Rev E 75:016210

    Article  MathSciNet  Google Scholar 

  72. Volos CK, Kyprianidis IM, Stouboulos IN (2011) Various synchronization phenomena in bidirectionally coupled double scroll circuits. Commun Nonlinear Sci Numer Simul 71:3356–3366

    Article  MathSciNet  Google Scholar 

  73. Aguilar-Lopez R, Martinez-Guerra R, Perez-Pinacho C (2014) Nonlinear observer for synchronization of chaotic systems with application to secure data transmission. Eur Phys J Special Topics 223:1541–1548

    Article  Google Scholar 

  74. Rosenblum MG, Pikovsky AS, Kurths J (1997) From phase to lag synchronization in coupled chaotic oscillators. Phys Rev Lett 78:4193–4196

    Article  MATH  Google Scholar 

  75. Akopov A, Astakhov V, Vadiasova T, Shabunin A, Kapitaniak T (2005) Frequency synchronization in clusters in coupled extended systems. Phys Lett A 334:169–172

    Article  MATH  Google Scholar 

  76. Hoang TM, Nakagawa M (2007) Anticipating and projective–anticipating synchronization of coupled multidelay feedback systems. Phys Lett A 365:407–411

    Google Scholar 

  77. Vaidyanathan S (2012) Anti-synchronization of four-wing chaotic systems via sliding mode control. Int J Auto Comput 9:274–279

    Article  Google Scholar 

  78. Vaidyanathan S, Volos C, Pham VT, Madhavan K, Idowo BA (2014) Adaptive backstepping control, synchronization and circuit simualtion of a 3-D novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities. Arch Cont Sci 33:257–285

    MATH  Google Scholar 

  79. Khalil H (2002) Nonlinear systems. Prentice Hall, New Jersey

    MATH  Google Scholar 

  80. Sastry S (1999) Nonlinear systems: analysis, stability, and control. Springer, USA

    Book  MATH  Google Scholar 

  81. Barakat M, Mansingka A, Radwan AG, Salama KN (2013) Generalized hardware post processing technique for chaos-based pseudorandom number generators. ETRI J 35:448–458

    Article  Google Scholar 

  82. Volos CK, Kyprianidis IM, Stouboulos IN (2013) Image encryption process based on chaotic synchronization phenomena. Signal Process 93:1328–1340

    Article  Google Scholar 

  83. Sundarapandian V, Pehlivan I (2012) Analysis, control, synchronization, and circuit design of a novel chaotic system. Math Comp Model 55:1904–1915

    Article  MathSciNet  MATH  Google Scholar 

  84. Bouali S, Buscarino A, Fortuna L, Frasca M, Gambuzza LV (2012) Emulating complex business cycles by using an electronic analogue. Nonlinear Anal Real World Appl 13:2459–2465

    Google Scholar 

  85. Fortuna L, Frasca M, Xibilia MG (2009) Chua’s circuit implementation: yesterday, today and tomorrow. World Scientific, Singapore

    Google Scholar 

  86. Tetzlaff R (2014) Memristors and memristive systems. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 102.02-2012.27

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viet-Thanh Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pham, VT., Vaidyanathan, S., Volos, C.K., Hoang, T.M., Van Yem, V. (2016). Dynamics, Synchronization and SPICE Implementation of a Memristive System with Hidden Hyperchaotic Attractor. In: Azar, A., Vaidyanathan, S. (eds) Advances in Chaos Theory and Intelligent Control. Studies in Fuzziness and Soft Computing, vol 337. Springer, Cham. https://doi.org/10.1007/978-3-319-30340-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30340-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30338-3

  • Online ISBN: 978-3-319-30340-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics