Skip to main content

Analysis, Adaptive Control and Synchronization of a Novel 3-D Chaotic System with a Quartic Nonlinearity and Two Quadratic Nonlinearities

  • Chapter
  • First Online:

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 337))

Abstract

In this work, we announce a seven-term novel 3-D chaotic system with a quartic nonlinearity and two quadratic nonlinearities. The proposed chaotic system is highly chaotic and it has interesting qualitative properties. The phase portraits of the novel chaotic system are illustrated and the dynamic properties of the highly chaotic system are discussed. The novel 3-D chaotic system has three unstable equilibrium points. We show that the equilibrium point at the origin is a saddle point, while the other two equilibrium points are saddle foci. The novel 3-D chaotic system has rotation symmetry about the \(x_3\) axis, which shows that every non-trivial trajectory of the system must have a twin trajectory. The Lyapunov exponents of the novel 3-D chaotic system are obtained as \(L_1 = 8.6606\), \(L_2 = 0\) and \(L_3 = -26.6523\), while the Kaplan-Yorke dimension of the novel chaotic system is obtained as \(D_{KY} = 2.3249\). Since the Maximal Lyapunov Exponent (MLE) of the novel chaotic system has a large value, viz. \(L_1 = 8.6606\), the novel chaotic system is highly chaotic. Since the sum of the Lyapunov exponents is negative, the novel chaotic system is dissipative. Next, we apply adaptive control method to derive new results for the global chaos control of the novel chaotic system with unknown parameters. We also apply adaptive control method to derive new results for the global chaos synchronization of the identical novel chaotic systems with unknown parameters. The main adaptive control results are established using Lyapunov stability theory. MATLAB simulations are shown to illustrate all the main results derived in this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arneodo A, Coullet P, Tresser C (1981) Possible new strange attractors with spiral structure. Commun Math Phys 79(4):573–576

    Article  MathSciNet  MATH  Google Scholar 

  2. Azar AT (2010) Fuzzy systems. IN-TECH, Vienna, Austria

    Google Scholar 

  3. Azar AT (2012) Overview of type-2 fuzzy logic systems. Int J Fuzzy Syst Appl 2(4):1–28

    Article  MathSciNet  Google Scholar 

  4. Azar AT, Serrano FE (2014) Robust IMC-PID tuning for cascade control systems with gain and phase margin specifications. Neural Comput Appl 25(5):983–995

    Article  Google Scholar 

  5. Azar AT, Serrano FE (2015) Adaptive sliding mode control of the Furuta pendulum. In: Azar AT, Zhu Q (eds) Advances and applications in sliding mode control systems. Studies in computational intelligence, vol 576. Springer, Berlin, pp 1–42

    Google Scholar 

  6. Azar AT, Serrano FE (2015) Deadbeat control for multivariable systems with time varying delays. In: Azar AT, Vaidyanathan S (eds) Chaos modeling and control systems design. Studies in computational intelligence, vol 576. Springer, Berlin, pp 97–132

    Google Scholar 

  7. Azar AT, Serrano FE (2015) Design and modeling of anti wind up PID controllers. In: Zhu Q, Azar AT (eds) Complex system modelling and control through intelligent soft computations. Studies in computational intelligence, vol 319. Springer, Berlin, pp 1–44

    Google Scholar 

  8. Azar AT, Serrano FE (2015) Stabilizatoin and control of mechanical systems with backlash. In: Azar AT, Vaidyanathan S (eds) Handbook of research on advanced intelligent control engineering and automation. Advances in computational intelligence and robotics (ACIR). IGI-Global, USA, pp 1–60

    Google Scholar 

  9. Azar AT, Vaidyanathan S (2015) Chaos modeling and control systems design. Studies in computational intelligence, vol 581. Springer, Berlin

    Google Scholar 

  10. Azar AT, Vaidyanathan S (2015) Computational intelligence applications in modeling and control. Studies in computational intelligence, vol 575. Springer, Berlin

    Google Scholar 

  11. Azar AT, Vaidyanathan S (2015) Handbook of research on advanced intelligent control engineering and automation. Advances in computational intelligence and robotics (ACIR). IGI-Global, USA

    Google Scholar 

  12. Azar AT, Zhu Q (2015) Advances and applications in sliding mode control systems. Studies in computational intelligence, vol 576. Springer, Berlin

    Google Scholar 

  13. Cai G, Tan Z (2007) Chaos synchronization of a new chaotic system via nonlinear control. J Uncertain Syst 1(3):235–240

    Google Scholar 

  14. Chen G, Ueta T (1999) Yet another chaotic attractor. Int J Bifurc Chaos 9(7):1465–1466

    Article  MathSciNet  MATH  Google Scholar 

  15. Das S, Goswami D, Chatterjee S, Mukherjee S (2014) Stability and chaos analysis of a novel swarm dynamics with applications to multi-agent systems. Eng Appl Artif Intell 30:189–198

    Article  Google Scholar 

  16. Feki M (2003) An adaptive chaos synchronization scheme applied to secure communication. Chaos, Solitons Fractals 18(1):141–148

    Article  MathSciNet  MATH  Google Scholar 

  17. Gaspard P (1999) Microscopic chaos and chemical reactions. Physica A 263(1–4):315–328

    Article  MathSciNet  Google Scholar 

  18. Gibson WT, Wilson WG (2013) Individual-based chaos: Extensions of the discrete logistic model. J Theor Biol 339:84–92

    Article  MathSciNet  Google Scholar 

  19. Guégan D (2009) Chaos in economics and finance. Annu Rev Control 33(1):89–93

    Article  Google Scholar 

  20. Huang X, Zhao Z, Wang Z, Li Y (2012) Chaos and hyperchaos in fractional-order cellular neural networks. Neurocomputing 94:13–21

    Article  Google Scholar 

  21. Karthikeyan R, Sundarapandian V (2014) Hybrid chaos synchronization of four-scroll systems via active control. J Electr Eng 65(2):97–103

    Google Scholar 

  22. Kaslik E, Sivasundaram S (2012) Nonlinear dynamics and chaos in fractional-order neural networks. Neural Netw 32:245–256

    Article  MATH  Google Scholar 

  23. Kengne J, Chedjou JC, Kenne G, Kyamakya K (2012) Dynamical properties and chaos synchronization of improved Colpitts oscillators. Commun Nonlinear Sci Numer Simul 17(7):2914–2923

    Article  MathSciNet  Google Scholar 

  24. Khalil HK (2001) Nonlinear systems, 3rd edn. Prentice Hall, New Jersey

    Google Scholar 

  25. Kyriazis M (1991) Applications of chaos theory to the molecular biology of aging. Exp Gerontol 26(6):569–572

    Article  Google Scholar 

  26. Lang J (2015) Color image encryption based on color blend and chaos permutation in the reality-preserving multiple-parameter fractional Fourier transform domain. Opt Commun 338:181–192

    Article  Google Scholar 

  27. Li D (2008) A three-scroll chaotic attractor. Phys Lett A 372(4):387–393

    Article  MathSciNet  MATH  Google Scholar 

  28. Li N, Pan W, Yan L, Luo B, Zou X (2014) Enhanced chaos synchronization and communication in cascade-coupled semiconductor ring lasers. Commun Nonlinear Sci Numer Simul 19(6):1874–1883

    Article  Google Scholar 

  29. Li Z, Chen G (2006) Integration of fuzzy logic and chaos theory. Studies in fuzziness and soft computing, vol 187. Springer, Berlin

    Google Scholar 

  30. Lian S, Chen X (2011) Traceable content protection based on chaos and neural networks. Appl Soft Comput 11(7):4293–4301

    Article  Google Scholar 

  31. Lorenz EN (1963) Deterministic periodic flow. J Atmos Sci 20(2):130–141

    Article  Google Scholar 

  32. Lü J, Chen G (2002) A new chaotic attractor coined. Int J Bifurc Chaos 12(3):659–661

    Article  MathSciNet  MATH  Google Scholar 

  33. Mondal S, Mahanta C (2014) Adaptive second order terminal sliding mode controller for robotic manipulators. J Franklin Inst 351(4):2356–2377

    Article  MathSciNet  Google Scholar 

  34. Murali K, Lakshmanan M (1998) Secure communication using a compound signal from generalized chaotic systems. Phys Lett A 241(6):303–310

    Article  MATH  Google Scholar 

  35. Nehmzow U, Walker K (2005) Quantitative description of robot-environment interaction using chaos theory. Robot Auton Syst 53(3–4):177–193

    Article  Google Scholar 

  36. Njah AN, Sunday OD (2009) Generalization on the chaos control of 4-D chaotic systems using recursive backstepping nonlinear controller. Chaos, Solitons Fractals 41(5):2371–2376

    Article  MATH  Google Scholar 

  37. Pehlivan I, Moroz IM, Vaidyanathan S (2014) Analysis, synchronization and circuit design of a novel butterfly attractor. J Sound Vib 333(20):5077–5096

    Article  Google Scholar 

  38. Petrov V, Gaspar V, Masere J, Showalter K (1993) Controlling chaos in Belousov-Zhabotinsky reaction. Nature 361:240–243

    Article  Google Scholar 

  39. Pham VT, Vaidyanathan S, Volos CK, Jafari S (2015) Hidden attractors in a chaotic system with an exponential nonlinear term. Eur Phys J: Spec Topics 224(8):1507–1517

    Google Scholar 

  40. Pham VT, Volos CK, Vaidyanathan S, Le TP, Vu VY (2015) A memristor-based hyperchaotic system with hidden attractors: dynamics, synchronization and circuital emulating. J Eng Sci Technol Rev 8(2):205–214

    Google Scholar 

  41. Qu Z (2011) Chaos in the genesis and maintenance of cardiac arrhythmias. Prog Biophys Mol Biol 105(3):247–257

    Article  Google Scholar 

  42. Rasappan S, Vaidyanathan S (2013) Hybrid synchronization of \(n\)-scroll Chua circuits using adaptive backstepping control design with recursive feedback. Malays J Math Sci 73(1):73–95

    MathSciNet  Google Scholar 

  43. Rasappan S, Vaidyanathan S (2014) Global chaos synchronization of WINDMI and Coullet chaotic systems using adaptive backstepping control design. Kyungpook Math J 54(1):293–320

    Google Scholar 

  44. Rhouma R, Belghith S (2011) Cryptoanalysis of a chaos based cryptosystem on DSP. Commun Nonlinear Sci Numer Simul 16(2):876–884

    Article  MathSciNet  MATH  Google Scholar 

  45. Rössler OE (1976) An equation for continuous chaos. Phys Lett A 57(5):397–398

    Article  Google Scholar 

  46. Vaidyanathan S, VTP, Volos CK, (2015) A 5-D hyperchaotic Rikitake dynamo system with hidden attractors. Eur Phys J: Spec Topics 224(8):1575–1592

    Google Scholar 

  47. Sampath S, Vaidyanathan S, Volos CK, Pham VT (2015) An eight-term novel four-scroll chaotic system with cubic nonlinearity and its circuit simulation. J Eng Sci Technol Rev 8(2):1–6

    Google Scholar 

  48. Sarasu P, Sundarapandian V (2011) Active controller design for generalized projective synchronization of four-scroll chaotic systems. Int J Syst Signal Control Eng Appl 4(2):26–33

    Google Scholar 

  49. Sarasu P, Sundarapandian V (2011) The generalized projective synchronization of hyperchaotic Lorenz and hyperchaotic Qi systems via active control. Int J Soft Comput 6(5):216–223

    Google Scholar 

  50. Sarasu P, Sundarapandian V (2012) Generalized projective synchronization of two-scroll systems via adaptive control. Int J Soft Comput 7(4):146–156

    Article  Google Scholar 

  51. Sharma A, Patidar V, Purohit G, Sud KK (2012) Effects on the bifurcation and chaos in forced Duffing oscillator due to nonlinear damping. Commun Nonlinear Sci Numer Simul 17(6):2254–2269

    Article  MathSciNet  Google Scholar 

  52. Sprott JC (1994) Some simple chaotic flows. Phys Rev E 50(2):647–650

    Article  MathSciNet  Google Scholar 

  53. Sprott JC (2004) Competition with evolution in ecology and finance. Phys Lett A 325(5–6):329–333

    Article  MathSciNet  MATH  Google Scholar 

  54. Suérez I (1999) Mastering chaos in ecology. Ecol Model 117(2–3):305–314

    Article  Google Scholar 

  55. Sundarapandian V (2010) Output regulation of the Lorenz attractor. Far East J Math Sci 42(2):289–299

    MathSciNet  MATH  Google Scholar 

  56. Sundarapandian V (2013) Adaptive control and synchronization design for the Lu-Xiao chaotic system. Lecture notes in electrical engineering, vol 131, pp 319–327

    Google Scholar 

  57. Sundarapandian V (2013) Analysis and anti-synchronization of a novel chaotic system via active and adaptive controllers. J Eng Sci Technol Rev 6(4):45–52

    Google Scholar 

  58. Sundarapandian V, Karthikeyan R (2011) Anti-synchronization of hyperchaotic Lorenz and hyperchaotic Chen systems by adaptive control. Int J Syst Signal Control Eng Appl 4(2):18–25

    Google Scholar 

  59. Sundarapandian V, Karthikeyan R (2011) Anti-synchronization of Lü and Pan chaotic systems by adaptive nonlinear control. Eur J Sci Res 64(1):94–106

    Google Scholar 

  60. Sundarapandian V, Karthikeyan R (2012) Adaptive anti-synchronization of uncertain Tigan and Li systems. J Eng Appl Sci 7(1):45–52

    Article  MATH  Google Scholar 

  61. Sundarapandian V, Pehlivan I (2012) Analysis, control, synchronization, and circuit design of a novel chaotic system. Math Comput Model 55(7–8):1904–1915

    Article  MathSciNet  MATH  Google Scholar 

  62. Sundarapandian V, Sivaperumal S (2011) Sliding controller design of hybrid synchronization of four-wing chaotic systems. Int J Soft Comput 6(5):224–231

    Article  Google Scholar 

  63. Suresh R, Sundarapandian V (2013) Global chaos synchronization of a family of \(n\)-scroll hyperchaotic Chua circuits using backstepping control with recursive feedback. Far East J Math Sci 7(2):219–246

    MathSciNet  MATH  Google Scholar 

  64. Tigan G, Opris D (2008) Analysis of a 3D chaotic system. Chaos, Solitons Fractals 36:1315–1319

    Google Scholar 

  65. Usama M, Khan MK, Alghatbar K, Lee C (2010) Chaos-based secure satellite imagery cryptosystem. Comput Math Appl 60(2):326–337

    Article  MathSciNet  MATH  Google Scholar 

  66. Vaidyanathan S (2011) Output regulation of Arneodo-Coullet chaotic system. Commun Comput Inf Sci 133:98–107

    Google Scholar 

  67. Vaidyanathan S (2011) Output regulation of the unified chaotic system. Commun Comput Inf Sci 198:1–9

    Google Scholar 

  68. Vaidyanathan S (2012) Adaptive controller and syncrhonizer design for the Qi-Chen chaotic system. Lecture notes of the institute for computer sciences. Social-informatics and telecommunications engineering, vol 84, pp 73–82

    Google Scholar 

  69. Vaidyanathan S (2012) Anti-synchronization of Sprott-L and Sprott-M chaotic systems via adaptive control. Int J Control Theory Appl 5(1):41–59

    Google Scholar 

  70. Vaidyanathan S (2012) Global chaos control of hyperchaotic Liu system via sliding control method. Int J Control Theory Appl 5(2):117–123

    Google Scholar 

  71. Vaidyanathan S (2012) Sliding mode control based global chaos control of Liu-Liu-Liu-Su chaotic system. Int J Control Theory Appl 5(1):15–20

    Google Scholar 

  72. Vaidyanathan S (2013) A new six-term 3-D chaotic system with an exponential nonlinearity. Far East J Math Sci 79(1):135–143

    Google Scholar 

  73. Vaidyanathan S (2013) A ten-term novel 4-D hyperchaotic system with three quadratic nonlinearities and its control. Int J Control Theory Appl 6(2):97–109

    Google Scholar 

  74. Vaidyanathan S (2013) Analysis and adaptive synchronization of two novel chaotic systems with hyperbolic sinusoidal and cosinusoidal nonlinearity and unknown parameters. J Eng Sci Technol Rev 6(4):53–65

    Google Scholar 

  75. Vaidyanathan S (2013) Analysis, control and synchronization of hyperchaotic Zhou system via adaptive control. Adv Intell Syst Comput 177:1–10

    Google Scholar 

  76. Vaidyanathan S (2014) A new eight-term 3-D polynomial chaotic system with three quadratic nonlinearities. Far East J Math Sci 84(2):219–226

    Google Scholar 

  77. Vaidyanathan S (2014) Analysis and adaptive synchronization of eight-term 3-D polynomial chaotic systems with three quadratic nonlinearities. Eur Phys J: Spec Topics 223(8):1519–1529

    Google Scholar 

  78. Vaidyanathan S (2014) Analysis, control and synchronisation of a six-term novel chaotic system with three quadratic nonlinearities. Int J Model Ident Control 22(1):41–53

    Google Scholar 

  79. Vaidyanathan S (2014) Generalised projective synchronisation of novel 3-D chaotic systems with an exponential non-linearity via active and adaptive control. Int J Model Ident Control 22(3):207–217

    Google Scholar 

  80. Vaidyanathan S (2014) Global chaos synchronisation of identical Li-Wu chaotic systems via sliding mode control. Int J Model Ident Control 22(2):170–177

    Google Scholar 

  81. Vaidyanathan S (2014) Qualitative analysis and control of an eleven-term novel 4-D hyperchaotic system with two quadratic nonlinearities. Int J Control Theory Appl 7:35–47

    Google Scholar 

  82. Vaidyanathan S (2015) 3-cells cellular neural network (CNN) attractor and its adaptive biological control. Int J PharmTech Res 8(4):632–640

    Google Scholar 

  83. Vaidyanathan S (2015) A 3-D novel highly chaotic system with four quadratic nonlinearities, its adaptive control and anti-synchronization with unknown parameters. J Eng Sci Technol Rev 8(2):106–115

    Google Scholar 

  84. Vaidyanathan S (2015) Adaptive backstepping control of enzymes-substrates system with ferroelectric behaviour in brain waves. Int J PharmTech Res 8(2):256–261

    Google Scholar 

  85. Vaidyanathan S (2015) Adaptive biological control of generalized Lotka-Volterra three-species biological system. Int J PharmTech Res 8(4):622–631

    Google Scholar 

  86. Vaidyanathan S (2015) Adaptive chaotic synchronization of enzymes-substrates system with ferroelectric behaviour in brain waves. Int J PharmTech Res 8(5):964–973

    Google Scholar 

  87. Vaidyanathan S (2015) Adaptive control of a chemical chaotic reactor. Int J PharmTech Res 8(3):377–382

    Google Scholar 

  88. Vaidyanathan S (2015) Adaptive synchronization of chemical chaotic reactors. Int J ChemTech Res 8(2):612–621

    Google Scholar 

  89. Vaidyanathan S (2015) Adaptive synchronization of generalized Lotka-Volterra three-species biological systems. Int J PharmTech Res 8(5):928–937

    Google Scholar 

  90. Vaidyanathan S (2015) Analysis, properties and control of an eight-term 3-D chaotic system with an exponential nonlinearity. Int J Model Ident Control 23(2):164–172

    Google Scholar 

  91. Vaidyanathan S (2015) Anti-synchronization of Brusselator chemical reaction systems via adaptive control. Int J ChemTech Res 8(6):759–768

    Google Scholar 

  92. Vaidyanathan S (2015) Chaos in neurons and adaptive control of Birkhoff-Shaw strange chaotic attractor. Int J PharmTech Res 8(5):956–963

    Google Scholar 

  93. Vaidyanathan S (2015) Dynamics and control of Brusselator chemical reaction. Int J ChemTech Res 8(6):740–749

    Google Scholar 

  94. Vaidyanathan S (2015) Dynamics and control of Tokamak system with symmetric and magnetically confined plasma. Int J ChemTech Res 8(6):795–803

    Google Scholar 

  95. Vaidyanathan S (2015) Hyperchaos, qualitative analysis, control and synchronisation of a ten-term 4-D hyperchaotic system with an exponential nonlinearity and three quadratic nonlinearities. Int J Model Ident Control 23(4):380–392

    Google Scholar 

  96. Vaidyanathan S (2015) Lotka-Volterra population biology models with negative feedback and their ecological monitoring. Int J PharmTech Res 8(5):974–981

    Google Scholar 

  97. Vaidyanathan S (2015) Synchronization of 3-cells cellular neural network (CNN) attractors via adaptive control method. Int J PharmTech Res 8(5):946–955

    Google Scholar 

  98. Vaidyanathan S (2015) Synchronization of Tokamak systems with symmetric and magnetically confined plasma via adaptive control. Int J ChemTech Res 8(6):818–827

    Google Scholar 

  99. Vaidyanathan S, Azar AT (2015) Analysis and control of a 4-D novel hyperchaotic system. Studies in computational intelligence, vol 581, pp 3–17

    Google Scholar 

  100. Vaidyanathan S, Azar AT (2015) Analysis, control and synchronization of a nine-term 3-D novel chaotic system. In: Azar AT, Vaidyanathan S (eds) Chaos modelling and control systems design. Studies in computational intelligence, vol 581. Springer, Berlin, pp 19–38

    Google Scholar 

  101. Vaidyanathan S, Madhavan K (2013) Analysis, adaptive control and synchronization of a seven-term novel 3-D chaotic system. Int J Control Theory Appl 6(2):121–137

    Google Scholar 

  102. Vaidyanathan S, Pakiriswamy S (2013) Generalized projective synchronization of six-term Sundarapandian chaotic systems by adaptive control. Int J Control Theory Appl 6(2):153–163

    Google Scholar 

  103. Vaidyanathan S, Pakiriswamy S (2015) A 3-D novel conservative chaotic system and its generalized projective synchronization via adaptive control. J Eng Sci Technol Rev 8(2):52–60

    Google Scholar 

  104. Vaidyanathan S, Rajagopal K (2011) Hybrid synchronization of hyperchaotic Wang-Chen and hyperchaotic Lorenz systems by active non-linear control. Int J Syst Signal Control Eng Appl 4(3):55–61

    Google Scholar 

  105. Vaidyanathan S, Rajagopal K (2012) Global chaos synchronization of hyperchaotic Pang and hyperchaotic Wang systems via adaptive control. Int J Soft Comput 7(1):28–37

    Article  MATH  Google Scholar 

  106. Vaidyanathan S, Rasappan S (2011) Global chaos synchronization of hyperchaotic Bao and Xu systems by active nonlinear control. Commun Comput Inf Sci 198:10–17

    Article  Google Scholar 

  107. Vaidyanathan S, Rasappan S (2014) Global chaos synchronization of \(n\)-scroll Chua circuit and Lur’e system using backstepping control design with recursive feedback. Arab J Sci Eng 39(4):3351–3364

    Article  Google Scholar 

  108. Vaidyanathan S, Sampath S (2012) Anti-synchronization of four-wing chaotic systems via sliding mode control. Int J Autom Comput 9(3):274–279

    Article  Google Scholar 

  109. Vaidyanathan S, Volos C (2015) Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system. Arch Control Sci 25(3):333–353

    MathSciNet  Google Scholar 

  110. Vaidyanathan S, Volos C, Pham VT (2014) Hyperchaos, adaptive control and synchronization of a novel 5-D hyperchaotic system with three positive Lyapunov exponents and its SPICE implementation. Arch Control Sci 24(4):409–446

    Google Scholar 

  111. Vaidyanathan S, Volos C, Pham VT, Madhavan K, Idowu BA (2014) Adaptive backstepping control, synchronization and circuit simulation of a 3-D novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities. Arch Control Sci 24(3):375–403

    Google Scholar 

  112. Vaidyanathan S, Azar AT, Rajagopal K, Alexander P (2015) Design and SPICE implementation of a 12-term novel hyperchaotic system and its synchronisation via active control. Int J Model Ident Control 23(3):267–277

    Google Scholar 

  113. Vaidyanathan S, Idowu BA, Azar AT (2015) Backstepping controller design for the global chaos synchronization of Sprott’s jerk systems. Studies in computational intelligence, vol 581, pp 39–58

    Google Scholar 

  114. Vaidyanathan S, Rajagopal K, Volos CK, Kyprianidis IM, Stouboulos IN (2015) Analysis, adaptive control and synchronization of a seven-term novel 3-D chaotic system with three quadratic nonlinearities and its digital implementation in LabVIEW. J Eng Sci Technol Rev 8(2):130–141

    Google Scholar 

  115. Vaidyanathan S, Sampath S, Azar AT (2015) Global chaos synchronisation of identical chaotic systems via novel sliding mode control method and its application to Zhu system. Int J Model Ident Control 23(1):92–100

    Google Scholar 

  116. Vaidyanathan S, Volos C, Pham VT, Madhavan K (2015) Analysis, adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk system and its SPICE implementation. Nonlinear Dyn 25(1):135–158

    Google Scholar 

  117. Vaidyanathan S, Volos CK, Kyprianidis IM, Stouboulos IN, Pham VT (2015) Analysis, adaptive control and anti-synchronization of a six-term novel jerk chaotic system with two exponential nonlinearities and its circuit simulation. J Eng Sci Technol Rev 8(2):24–36

    Google Scholar 

  118. Vaidyanathan S, Volos CK, Pham VT (2015) Analysis, adaptive control and adaptive synchronization of a nine-term novel 3-D chaotic system with four quadratic nonlinearities and its circuit simulation. J Eng Sci Technol Rev 8(2):181–191

    Google Scholar 

  119. Vaidyanathan S, Volos CK, Pham VT (2015) Analysis, control, synchronization and SPICE implementation of a novel 4-D hyperchaotic Rikitake dynamo system without equilibrium. J Eng Sci Technol Rev 8(2):232–244

    Google Scholar 

  120. Vaidyanathan S, Volos CK, Pham VT (2015) Global chaos control of a novel nine-term chaotic system via sliding mode control. In: Azar AT, Zhu Q (eds) Advances and applications in sliding mode control systems. Studies in computational intelligence, vol 576. Springer, Berlin, pp 571–590

    Google Scholar 

  121. Vincent UE, Njah AN, Laoye JA (2007) Controlling chaos and deterministic directed transport in inertia ratchets using backstepping control. Physica D 231(2):130–136

    Article  MathSciNet  MATH  Google Scholar 

  122. Volos CK, Kyprianidis IM, Stouboulos IN (2013) Experimental investigation on coverage performance of a chaotic autonomous mobile robot. Robot Auton Syst 61(12):1314–1322

    Article  Google Scholar 

  123. Volos CK, Kyprianidis IM, Stouboulos IN, Tlelo-Cuautle E, Vaidyanathan S (2015) Memristor: A new concept in synchronization of coupled neuromorphic circuits. J Eng Sci Technol Rev 8(2):157–173

    Google Scholar 

  124. Witte CL, Witte MH (1991) Chaos and predicting varix hemorrhage. Med Hypotheses 36(4):312–317

    Article  MathSciNet  Google Scholar 

  125. Yuan G, Zhang X, Wang Z (2014) Generation and synchronization of feedback-induced chaos in semiconductor ring lasers by injection-locking. Optik: Int J Light Electron Opt 125(8):1950–1953

    Article  Google Scholar 

  126. Zaher AA, Abu-Rezq A (2011) On the design of chaos-based secure communication systems. Commun Nonlinear Syst Numer Simul 16(9):3721–3727

    Article  MathSciNet  MATH  Google Scholar 

  127. Zhang X, Zhao Z, Wang J (2014) Chaotic image encryption based on circular substitution box and key stream buffer. Sig Process Image Commun 29(8):902–913

    Article  Google Scholar 

  128. Zhou W, Xu Y, Lu H, Pan L (2008) On dynamics analysis of a new chaotic attractor. Phys Lett A 372(36):5773–5777

    Article  MathSciNet  MATH  Google Scholar 

  129. Zhu C, Liu Y, Guo Y (2010) Theoretic and numerical study of a new chaotic system. Intell Inf Manag 2:104–109

    Google Scholar 

  130. Zhu Q, Azar AT (2015) Complex system modelling and control through intelligent, soft computations. Studies in fuzzines and soft computing, vol 319. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundarapandian Vaidyanathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vaidyanathan, S. (2016). Analysis, Adaptive Control and Synchronization of a Novel 3-D Chaotic System with a Quartic Nonlinearity and Two Quadratic Nonlinearities. In: Azar, A., Vaidyanathan, S. (eds) Advances in Chaos Theory and Intelligent Control. Studies in Fuzziness and Soft Computing, vol 337. Springer, Cham. https://doi.org/10.1007/978-3-319-30340-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30340-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30338-3

  • Online ISBN: 978-3-319-30340-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics