Skip to main content

Two (and Three) Dimensions

  • Chapter
  • First Online:
  • 1651 Accesses

Part of the book series: Monographs in Electrochemistry ((MOEC))

Abstract

Electrochemical cells are of course three-dimensional (and in fact there is a section in this chapter on three-dimensional geometry, Sect. 12.4.1). In preceding chapters, symmetry or the absence of concentration gradients in two of these dimensions has been assumed, thus conveniently reducing the system to one dimension. This is not always possible, and in fact in recent decades, some of the most popular electrodes require at least two dimensions for reasonable simulations. These are first and foremost the ultramicroelectrodes (UMEs), in their various forms of disk and band electrodes, among others. Some modern electrochemical techniques such as scanning electrochemical microscopy employ UMEs. UMEs have also been assembled into arrays of such, increasing the simulation difficulties. Fortunately, the vast majority of these UMEs have zero gradients in one of the three directions, or two of the three directions share the same geometry and thus require “only” two dimensions for their representation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    These values were kindly communicated to us by Dr. Peter Mahon, Swinburne University of Technology, Melbourne, Australia.

References

  1. Amatore C, Pebay C, Thouin L, Wang A, Warkocz JS (2010) Difference between ultramicroelectrodes and microelectrodes: influence of natural convection. Anal Chem 82:6933–6939

    Article  CAS  Google Scholar 

  2. Bard AJ, Faulkner LR (2001) Electrochemical methods. Wiley, New York

    Google Scholar 

  3. Laitinen HA, Kolthoff IM (1939) A study of diffusion processes by electrolysis with microelectrodes. J Am Chem Soc 61:3344–3349

    Article  CAS  Google Scholar 

  4. Galus Z (1994) Fundamentals of electrochemical analysis, 2nd edn. Ellis Horwood, New York (trans: Chalmers RA, Bryce WAJ (eds))

    Google Scholar 

  5. Vetter K (1961) Elektrochemische kinetik. Springer, Berlin

    Book  Google Scholar 

  6. Levich VG (1962) Physicochemical hydrodynamics. Prentice-Hall, New Jersey

    Google Scholar 

  7. Bond AM, Oldham KB, Zoski CG (1988) Theory of electrochemical processes at an inlaid disc microelectrode under steady-state conditions. J Electroanal Chem 245:71–104

    Article  CAS  Google Scholar 

  8. Engstrom RC, Pharr CM, Koppang MD (1987) Visualization of the edge effect with electrogenerated chemiluminescence. J Electroanal Chem 221:251–255

    Article  CAS  Google Scholar 

  9. Zeiri L, Younes O, Efrima S, Deutsch M (1997) Interfacial electrodeposition of silver. J Phys Chem B 101:9299–9308

    Article  CAS  Google Scholar 

  10. Fleischmann M, Pons S, Rolison DR, Schmidt PP (1997) Ultramicroelectrodes. Dataetch Systems, Morganton, NC

    Google Scholar 

  11. Montenegro I, Queirós MA, Daschbach JL (eds) (1991) Microelectrodes: theory and applications. Nato science series E, vol 197. Springer, Heidelberg

    Google Scholar 

  12. Aoki K (1993) Theory of ultramicroelectrodes. Electroanalysis 5:627–639

    Article  CAS  Google Scholar 

  13. Amatore C (1995) Electrochemistry at ultramicroelectrodes. In: Rubinstein I (ed) Physical electrochemistry. Marcel Dekker, New York, pp 131–208

    Google Scholar 

  14. Speiser B (1996) Numerical simulation of electroanalytical experiments: recent advances in methodology. In: Bard AJ, Rubinstein I (eds) Electroanalytical chemistry, vol 19. Marcel Dekker, New York, pp 1–108

    Google Scholar 

  15. Heinze J (1993) Elektrochemie mit Ultramikroelektroden. Angew Chem 105:1327–1349

    Article  CAS  Google Scholar 

  16. Bieniasz LK, Britz D (2004) Recent developments in digital simulation of electroanalytical experiments. Pol J Chem 78:1195–1219

    CAS  Google Scholar 

  17. Chen S, Liu Y (2014) Electrochemistry at nanometer-sized electrodes. Phys Chem Chem Phys 16:635–652

    Article  CAS  Google Scholar 

  18. Feeney R, Kounaves SP (2000) Microfabricated ultramicroelectrode arrays: developments, advances, and applications in environmental analysis. Electroanalysis 12:677–684

    Article  CAS  Google Scholar 

  19. Forster R (2014) Micro- and nanoelectrodes. In: Kreysa G, i Ota K, Savinell RF (eds) Encyclopedia of applied electrochemistry. Springer, Heidelberg, pp 1248–1256 (Online)

    Google Scholar 

  20. Kranz C (2014) Recent advancements in nanoelectrodes and nanopipettes used in combined scanning electrochemical microscopy techniques. Analyst 139:336–352

    Article  CAS  Google Scholar 

  21. Oja SM, Wood M, Zhang B (2013) Nanoscale electrochemistry. Anal Chem 85:473–486

    Article  CAS  Google Scholar 

  22. Wang Y, Velmurugan J, Mirkin MV (2010) Kinetics of charge-transfer reactions at nanoscopic electrochemical interfaces. Israel J Chem 50:291–305

    Article  CAS  Google Scholar 

  23. Oldham KB (1981) Edge effects in semiinfinite diffusion. J Electroanal Chem 122:1–17

    Article  CAS  Google Scholar 

  24. Lingane PJ (1964) Chronopotentiometry and chronoamperometry with unshielded planar electrodes. Anal Chem 36:1723–1726

    Article  CAS  Google Scholar 

  25. Soos ZG, Lingane PJ (1964) Derivation of the chronoamperometric constant for unshielded, circular, planar electrodes. J Phys Chem 68:3821–3828

    Article  CAS  Google Scholar 

  26. Kakihana M, Ikeuchi H, Satô GP, Tokuda K (1980) Chronoamperometric measurement of diffusion coefficients with a microdisk electrode. J Electroanal Chem 108:381–383

    CAS  Google Scholar 

  27. Kakihana M, Ikeuchi H, Satô GP, Tokuda K (1981) Diffusion current at microdisk electrodes - application to accurate measurement of diffusion coefficients. J Electroanal Chem 117: 201–211

    Article  CAS  Google Scholar 

  28. Heinze J (1981) Diffusion processes at finite (micro) disk electrodes solved by digital simulation. J Electroanal Chem 124:73–86

    Article  CAS  Google Scholar 

  29. Flanagan JB, Marcoux L (1973) Digital simulation of edge effects at planar disc electrodes. J Phys Chem 77:1051–1055

    Article  CAS  Google Scholar 

  30. Shoup D, Szabo A (1982) Chronoamperometric current at finite disk electrodes. J Electroanal Chem 140:237–245

    Article  CAS  Google Scholar 

  31. Saito Y (1968) A theoretical study on the diffusion current at the stationary electrodes of circular and narrow band types. Rev Polarog (Jpn) 15:177–187

    Article  CAS  Google Scholar 

  32. Zoski CG (1990) A survey of steady-state microelectrodes and experimental approaches to a voltammetric steady state. J Electroanal Chem 296:317–333

    Article  CAS  Google Scholar 

  33. Liu X, Lu J, Cha C (1990) Square root law for the diffusion current at a microelectrode. J Electroanal Chem 294:289–292

    Article  CAS  Google Scholar 

  34. Grigull U (1963) Die Grundgesetze der Wärmeübertragung, 3rd edn. Springer, Heidelberg

    Google Scholar 

  35. Gröber H (1921) Die Grundgesetze der Wärmeleitung und des Wärmeübergangs. Springer, Heidelberg. Often only Grigull is cited as the author. Reprint of the 3rd Ed. of 1955

    Google Scholar 

  36. Tranter CJ (1951) Integral transforms in mathematical physics. Methuen/Wiley, London/New York

    Google Scholar 

  37. Weber H (1873) Ueber die Besselschen Functionen und ihre Anwendung auf die Theorie der elektrischen Ströme. J Reine Angew Math 75:75–105

    Article  Google Scholar 

  38. Sarangapani S, de Levie R (1979) On some problems of diffusion towards a circular disk. J Electroanal Chem 102:165–174

    Article  CAS  Google Scholar 

  39. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford Clarendon Press, Oxford

    Google Scholar 

  40. Crank J, Furzeland RM (1977) The treatment of boundary singularities in axially symmetric problems containing discs. J Inst Math Appl 20:355–370

    Article  Google Scholar 

  41. Aoki K, Osteryoung J (1981) Diffusion-controlled current at the stationary finite disk electrode. Theory. J Electroanal Chem 122:19–35

    Article  CAS  Google Scholar 

  42. Aoki K, Osteryoung J (1984) Formulation of the diffusion-controlled current at very small stationary disk electrodes. J Electroanal Chem 160:335–339

    Article  CAS  Google Scholar 

  43. Phillips CG, Jansons KM (1990) The short-time transient of diffusion outside a conducting body. Proc R Soc Lond A 428:431–439

    Article  Google Scholar 

  44. Gavaghan DJ (1998) An exponentially expanding mesh ideally suited to the fast and efficient simulation of diffusion processes at microdisc electrodes. 1. Derivation of the mesh. J Electroanal Chem 456:1–12

    Article  CAS  Google Scholar 

  45. Gavaghan DJ (1998) An exponentially expanding mesh ideally suited to the fast and efficient simulation of diffusion processes at microdisc electrodes. 2. Application to chronoamperometry. J Electroanal Chem 456:13–23

    Article  CAS  Google Scholar 

  46. Britz D, Poulsen K, Strutwolf J (2004) Reference values of the diffusion-limited current at a disk electrode. Electrochim Acta 50:107–113. See Erratum, ibid. 53:8101 (2008)

    Google Scholar 

  47. Mahon PJ, Oldham KB (2004) The transient current at the disk electrode under diffusion control: a new determination by the Cope-Tallman method. Electrochim Acta 49:5041–5048

    Article  CAS  Google Scholar 

  48. Mahon PJ, Oldham KB (2005) Diffusion-controlled chronoamperometry at a disk electrode. Anal Chem 77:6100–6101

    Article  CAS  Google Scholar 

  49. Heinze J (1981) Theory of cyclic voltammetry at microdisk electrodes. Ber Bunsenges Phys Chem 85:1096–1103

    Article  CAS  Google Scholar 

  50. Aoki K, Akimoto K, Tokuda K, Matsuda H, Osteryoung J (1984) Linear sweep voltammetry at very small stationary disk electrodes. J Electroanal Chem 171:219–230

    Article  CAS  Google Scholar 

  51. Aoki K, Tokuda K, Matsuda H (1986) Theory of chronoamperometric curves for a short time at microband electrodes. Denki Kagaku 54:1010–1017

    CAS  Google Scholar 

  52. Abramowitz M, Stegun IA (eds) (1969) Handbook of mathematical functions. Dover Publications, New York

    Google Scholar 

  53. Szabo A, Cope DK, Tallman DE, Kovach PM, Wightman RM (1987) Chronoamperometric current at hemicylinder and band microelectrodes: theory and experiment. J Electroanal Chem 217:417–423

    Article  CAS  Google Scholar 

  54. Senthamarai R, Rajendran L (2008) Analytical expression for transient chronoamperometric current at ultramicroband electrode. Russ J Electrochem 44:1156–1161

    Article  CAS  Google Scholar 

  55. Amatore C, Pebay C, Sella C, Thouin L (2012) Mass transport at microband electrodes: transient, quasi-steady-state, and convective regimes. Chem Phys Chem 13:1562–1568

    CAS  Google Scholar 

  56. Amatore CA, Fosset B, Deakin MR, Wightman RM (1987) Electrochemical kinetics and microelectrodes. Part III. Equivalency between band and hemicylinder electrodes. J Electroanal Chem 225:33–48

    CAS  Google Scholar 

  57. Coen S, Cope DK, Tallman DE (1986) Diffusion current at a band electrode by an integral equation method. J Electroanal Chem 215:29–48

    Article  CAS  Google Scholar 

  58. Cope DK, Scott CH, Tallman DE (1990) Transient behavior at planar microelectrodes. Diffusion current at ring electrodes by the integral equation method. J Electroanal Chem 285:49–69

    CAS  Google Scholar 

  59. Cope DK, Tallman DE (1999) Transit behavior at planar microelectrodes. High efficiency algorithm for an integral equation method at a band electrode. Electrochem Soc Proc 99-5:82–89

    CAS  Google Scholar 

  60. Aoki K, Tokuda K (1987) Linear sweep voltammetry at microband electrodes. J Electroanal Chem 237:163–170

    Article  CAS  Google Scholar 

  61. Bieniasz LK (2015) Theory of potential step chronoamperometry at a microband electrode: complete explicit semi-analytical formulae for the Faradaic current density and the Faradaic current. Electrochim Acta 178:25–33

    Article  CAS  Google Scholar 

  62. Bieniasz LK (2016) Highly accurate, inexpensive procedures for computing theoretical chronoamperometric currents at single straight electrode edges and at single microband electrodes. J Electroanal Chem 760:71–79

    Article  CAS  Google Scholar 

  63. Britz D, Østerby O, Strutwolf J (2010) Reference values of the chronoamperometric response at cylindrical and capped cylindrical electrodes. Electrochim Acta 55:5629–5635

    Article  CAS  Google Scholar 

  64. Zoski CG, Mirkin MV (2002) Steady-state limiting currents at finite conical microelectrodes. Anal Chem 74:1986–1992

    Article  CAS  Google Scholar 

  65. Selzer Y, Mandler D (1999) Comprehensive treatment of sphere-cap microelectrodes (SCMs) using digital simulations. Electrochem Commun 1:569–575

    Article  CAS  Google Scholar 

  66. Britz D, Strutwolf J (2006) Electroanalytical response of an ultramicroelectrode at the bottom of an insulating conical well: digital simulation. Electrochim Acta 52:33–41

    Article  CAS  Google Scholar 

  67. Birke R (1989) Steady state concentrations and currents on an oblate spheroid microelectrode. J Electroanal Chem 274:297–304

    Article  CAS  Google Scholar 

  68. Diao GW, Li L, Zhang ZX (1996) The equation of chronoamperometric current on an oblate hemispheroid microelectrode and its verification. Chin J Chem 14:331–337

    CAS  Google Scholar 

  69. Oldham KB (1992) Steady-state shape voltammetry at microelectrodes of arbitrary shape. J Electroanal Chem 323:53–76

    Article  CAS  Google Scholar 

  70. Amatore C, Oleinick A, Svir I (2004) Simulation of diffusion at microring electrodes through conformal mapping. J Electroanal Chem 564:245–260

    Article  CAS  Google Scholar 

  71. Brookes BA, Davies TJ, Fisher AC, Evans RG, Wilkins SJ, Yunus K, Wadhawan JD, Compton RG (2003) Computational and experimental study of the cyclic voltammetry response of partially blocked electrodes. Part 1. Nonoverlapping, uniformly distributed blocking systems. J Phys Chem B 107:1616–1627

    Article  CAS  Google Scholar 

  72. Davies TJ, Brookes BA, Fisher AC, Yunus K, Wilkins SJ, Greene PR, Wadhawan JD, Compton RG (2003) Computational and experimental study of the cyclic voltammetry response of partially blocked electrodes. Part II: randomly distributed and overlapping blocking systems. J Phys Chem B 107:6431–6449

    CAS  Google Scholar 

  73. Davies TJ, Brookes BA, Compton RG (2004) A computational and experimental study of the cyclic voltammetry response of partially blocked electrodes, part III: interfacial liquid–liquid kinetics of aqueous vitamin B12s with random arrays of femtolitre microdroplets of dibromocyclohexane. J Electroanal Chem 566:193–216

    Article  CAS  Google Scholar 

  74. Engstrom RC, Weber M, Wunder DJ, Burgess R, Winquist S (1986) Measurements within the diffusion layer using a microelectrode probe. Anal Chem 58:844–848

    Article  CAS  Google Scholar 

  75. Cornut R, Griveau S, Lefrou C (2010) Accuracy study on fitting procedure of kinetics SECM feedback experiments. J Electroanal Chem 650:55–61

    Article  CAS  Google Scholar 

  76. Deng H, Peljo P, Momotenko D, Cortés-Salazar F, Stockmann TJ, Kontturi K, Opallo M, Girault HH (2014) Kinetic differentiation of bulk/interfacial oxygen reduction mechanisms at/near liquid/liquid interfaces using scanning electrochemical microscopy. J Electroanal Chem 732:101–109

    Article  CAS  Google Scholar 

  77. Fernández JL, Wijesinghe M, Zoski CG (2015) Theory and experiments for voltammetric and SECM investigations and application to ORR electrocatalysis at nanoelectrode ensembles of ultramicroelectrode dimensions. Anal Chem 87:1066–1074

    Article  CAS  Google Scholar 

  78. Holder MN, Gardner CE, Macpherson JV, Unwin PR (2005) Combined scanning electrochemical-atomic force microscopy (SECM-AFM): simulation and experiment for flux-generation at un-insulated metal-coated probes. J Electroanal Chem 585:8–18

    Article  CAS  Google Scholar 

  79. Jensen MB, Tallman DE (2013) A LabVIEW-based virtual instrument for simulation and analysis of SECM approach curves. J Solid State Electrochem 17:2999–3003

    Article  CAS  Google Scholar 

  80. Kiss A, Nagy G (2015) Deconvolution in potentiometric SECM. Electroanalysis 27:587–590

    Article  CAS  Google Scholar 

  81. Lefrou C (2006) A unified new analytical approximation for positive feedback currents with a microdisk SECM tip. J Electroanal Chem 592:103–112

    Article  CAS  Google Scholar 

  82. Leonhardt K, Avdic A, Lugstein A, Pobelov I, Wandlowski T, Gollas B, Denuault G (2013) Scanning electrochemical microscopy: diffusion controlled approach curves for conical AFM-SECM tips. Electrochem Commun 27:29–33

    Article  CAS  Google Scholar 

  83. Li F, Unwin PR (2015) Scanning electrochemical microscopy (SECM) of photoinduced electron transfer kinetics at liquid/liquid interfaces. J Phys Chem C 119:4031–4043

    Article  CAS  Google Scholar 

  84. Lindsey G, Abercrombie S, Denuault G, Daniele S, De Faveri E (2007) Scanning electrochemical microscopy: approach curves for sphere-cap scanning electrochemical microscopy tips. Anal Chem 79:2952–2956

    Article  CAS  Google Scholar 

  85. Lucas M, Stafiej J, Slim C, Delpech S, di Caprio D (2014) Cellular automata modeling of scanning electrochemical microscopy (SECM) experiments. Electrochim Acta 145:314–318

    Article  CAS  Google Scholar 

  86. Mahé É (2007) Electrochemistry in confined microsystems. Part 1. CV-SECM of reversible system at a confined disk ultramicroelectrode. Electrochim Acta 52:5018–5029

    Article  CAS  Google Scholar 

  87. Sklyar O, Kueng A, Kranz C, Mizaikoff B, Lugstein A, Bertagnolli E, Wittstock G (2005) Numerical simulation of scanning electrochemical microscopy experiments with frame-shaped integrated atomic force microscopy - SECM probes using the boundary element method. Anal Chem 77:764–771

    Article  CAS  Google Scholar 

  88. Sun P, Mirkin MV (2007) Scanning electrochemical microscopy with slightly recessed nanotips. Anal Chem 79:5809–5816

    Article  CAS  Google Scholar 

  89. Träuble M (2004) Modellierung und Simulation elektrochemischer Prozesse mit Randelementmethoden. Ph.D. thesis, Universität Oldenburg, Oldenburg (in German)

    Google Scholar 

  90. Wu ZQ, Zhou T, Wang K, Zhang JR, Xia XH (2010) Current distribution at electrode surfaces as simulated by finite element method. Electrochim Acta 55:4870–4875

    Article  CAS  Google Scholar 

  91. Yao D, Chen J, Liu X, Lu X (2010) Progress in the theory of electron transfer across liquid/liquid interfaces based on thin layer. Chem Bull/Huaxue Tongbao 73:3–9 (in Chinese with some English content)

    CAS  Google Scholar 

  92. Britz D, Strutwolf J (2014) Digital simulation of electrochemistry at microelectrodes. In: Lei KF (ed) Microelectrodes. Nova Science Publishers, New York, pp 1–85

    Google Scholar 

  93. Oldham KB, Zoski CG (1988) Comparison of voltammetric steady states at hemispherical and disc microelectrodes. J Electroanal Chem 256:11–19

    Article  CAS  Google Scholar 

  94. Gavaghan DJ (1997) How accurate is your two-dimensional numerical simulation? Part 1. An introduction. J Electroanal Chem 420:147–158

    Article  CAS  Google Scholar 

  95. Fernández JL, Bard AJ (2004) Scanning electrochemical microscopy 50. Kinetic study of electrode reactions by the tip generation-substrate collection mode. Anal Chem 76:2281–2289

    Article  CAS  Google Scholar 

  96. Myland JC, Oldham KB (1996) The three-dimensional simulation of short-time diffusion-controlled voltammetry at the walls of a hollow cube. J Electroanal Chem 405:39–50

    Article  Google Scholar 

  97. Myland JC, Oldham KB (2005) Modelling diffusion to a disk electrode by fully explicit simulation. J Electroanal Chem 576:353–362

    Article  CAS  Google Scholar 

  98. Myland J, Oldham KB (2014) The excess current in cyclic voltammetry arising from the presence of an electrode edge. J Solid State Electrochem 18:3259–3269

    Article  CAS  Google Scholar 

  99. Gourlay AR (1970) Hopscotch: a fast second-order partial differential equation solver. J Inst Math Appl 6:375–390

    Article  Google Scholar 

  100. Peaceman DW, Rachford HH (1955) The numerical solution of parabolic and elliptic differential equations. J Soc Ind Appl Math 3:28–41

    Article  Google Scholar 

  101. Evans NTS, Gourlay AR (1977) The solution of a two-dimensional time-dependent diffusion problem concerned with oxygen metabolism in tissues. J Inst Math Appl 19:239–251

    Article  Google Scholar 

  102. Heinze J (1984) Theory of cyclic voltammetry at microdisk electrodes. Ber Bunsenges Phys Chem 85:1096–1103

    Article  Google Scholar 

  103. Heinze J, Störzbach M (1986) Electrochemistry at ultramicroelectrodes - simulation of heterogeneous and homogeneous kinetics by an improved ADI-technique. Ber Bunsenges Phys Chem 90:1043–1048

    Article  CAS  Google Scholar 

  104. Amatore C, Svir I (2003) A new and powerful approach for simulation of diffusion at microelectrodes based on overlapping sub-domains: application to chronoamperometry at the microdisk. J Electroanal Chem 557:75–90

    Article  CAS  Google Scholar 

  105. Arkoub IA, Amatore C, Sella C, Thouin L, Warkocz JS (2001) Diffusion at double microband electrodes operated within a thin film coating. Theory and experimental illustration. J Phys Chem B 105:8694–8703

    CAS  Google Scholar 

  106. Gaidamauskaite E, Baronas R (2007) A comparison of finite difference schemes for computational models of biosensors. Nonlinear Anal Modell Control 12:359–369

    CAS  Google Scholar 

  107. Ikeuchi H, Kanakubo M (2000) Determination of diffusion coefficients of the electrode reaction products by the double potential step chronoamperometry at small disk electrodes. J Electroanal Chem 493:93–99

    Article  CAS  Google Scholar 

  108. Carnahan B, Luther HA, Wilkes JO (1969) Applied numerical methods. Wiley, New York

    Google Scholar 

  109. Feldberg SW (1987) Propagational inadequacy of the hopscotch finite difference algorithm: the enhancement of performance when used with an exponentially expanding grid for simulation of electrochemical diffusion problems. J Electroanal Chem 222:101–106

    Article  CAS  Google Scholar 

  110. Safford LK, Weaver MJ (1989) The combined influences of solution resistance and charge-transfer kinetics on microelectrode cyclic voltammetry. J Electroanal Chem 261:241–247

    Article  CAS  Google Scholar 

  111. Taylor G, Girault HH, McAleer J (1990) Digital simulation of charge transfer to an ultramicrodisk interface. J Electroanal Chem 293:19–44

    Article  CAS  Google Scholar 

  112. Barnes EO, Lewis GEM, Dale SEC, Marken F, Compton RG (2013) Dual band electrodes in generator-collector mode: simultaneous measurement of two species. J Electroanal Chem 703:38–44

    Article  CAS  Google Scholar 

  113. Ellison J, Eloul S, Batchelor-McAuley C, Tschulik K, Salter C, Compton RG (2015) The effect of insulator nano-sheath thickness on the steady state current at a micro-disc electrode. J Electroanal Chem 745:66–71

    Article  CAS  Google Scholar 

  114. Eloul S, Compton RG (2014) Voltammetric sensitivity enhancement by using preconcentration adjacent to the electrode: simulation, critical evaluation, and insights. J Phys Chem C 118:24520–24532

    Article  CAS  Google Scholar 

  115. Eloul S, Compton RG (2014) Shielding of a microdisc electrode surrounded by an adsorbing surface. Chem Electrochem 1:917–924

    CAS  Google Scholar 

  116. Henstridge MC, Ward KR, Compton RG (2014) The Marcus-Hush model of electrode kinetics at a single nanoparticle. J Electroanal Chem 712:14–18

    Article  CAS  Google Scholar 

  117. Lin C, Compton RG (2015) Voltammetric mechanistic characterisation of electrode reactions: distinguishing between chemical instability and fast product diffusion. J Electroanal Chem 743:86–92

    Article  CAS  Google Scholar 

  118. Molina A, Gonzalez J, Barnes EO, Compton RG (2014) Simple analytical equations for the current-potential curves at microelectrodes: a universal approach. J Phys Chem C 118:346–356

    Article  CAS  Google Scholar 

  119. Molina A, Olmos J, Laborda E (2015) Reverse pulse voltammetry at spherical and disc microelectrodes: characterization of homogeneous chemical equilibria and their impact on the species diffusivities. Electrochim Acta 169:300–309

    Article  CAS  Google Scholar 

  120. Ngamchuea K, Eloul S, Tschulik K, Compton RG (2014) Planar diffusion to macro disc electrodes - what electrode size is required for the Cottrell and Randles-Sevcik equations to apply quantitatively? J Solid State Electrochem 18:3251–3257

    Article  CAS  Google Scholar 

  121. Wang H, Du N (2014) Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations. J Comput Phys 258:305–318

    Article  Google Scholar 

  122. Ward KR, Lawrence NS, Hartshorne RS, Compton RG (2012) Modelling the steady state voltammetry of a single spherical nanoparticle on a surface. J Electroanal Chem 683:37–42

    Article  CAS  Google Scholar 

  123. Ward KR, Xiong L, Lawrence NS, Hartshorne RS, Compton RG (2013) Thin-layer vs. semi-infinite diffusion in cylindrical pores: a basis for delineating Fickian transport to identify nano-confinement effects in voltammetry. J Electroanal Chem 702:15–24

    Article  CAS  Google Scholar 

  124. Britz D, Østerby O, Strutwolf J (2003) Damping of Crank-Nicolson error oscillations. Comput Biol Chem 27:253–263

    Article  CAS  Google Scholar 

  125. Østerby O (2003) Five ways of reducing the Crank-Nicolson oscillations. BIT Numer Math 43:811–822

    Article  Google Scholar 

  126. Pearson CE (1965) Impulsive end condition for diffusion equation. Math Comput 19:570–576

    Article  Google Scholar 

  127. Khaliq AQM, Wade BA (2001) On smoothing of the Crank-Nicolson scheme for nonhomogeneous parabolic problems. J Comput Methods Sci Eng 1:107–124

    Google Scholar 

  128. Luskin M, Rannacher R (1982) On the smoothing properties of the Crank-Nicolson scheme. Appl Anal 14:117–135

    Article  Google Scholar 

  129. Rannacher R (1982) Discretisation of the heat equation with singular initial data. Z Angew Math Mech 62:T346–T348

    Article  Google Scholar 

  130. Rannacher R (1984) Finite element solution of diffusion problems with irregular data. Numer Math 43:309–327

    Article  Google Scholar 

  131. Østerby O (2002) Five ways of reducing the Crank-Nicolson oscillations. Technical Report Daimi PB-558, Department of Computer Science, Aarhus University

    Google Scholar 

  132. Bard AJ, Crayston JA, Kittlesen GP, Shea TV, Wrighton MS (1986) Digital simulation of the measured electrochemical response of reversible redox couples at microelectrode arrays: consequences arising from closely spaced ultramicroelectrodes. Anal Chem 58:2321–2331

    Article  CAS  Google Scholar 

  133. Britz D (1996) Brute force digital simulation. J Electroanal Chem 406:15–21

    Article  Google Scholar 

  134. Nann T (1997) Digitale Simulation in der Elektrochemie mit der Methode der Finiten Elementen. Ph.D. thesis, Albert-Ludwigs-Universität zu Freiburg im Breisgau. Publ. by Shaker Verlag, Aachen

    Google Scholar 

  135. Nann T, Heinze J (1999) Simulation in electrochemistry using the finite element method. Part 1. The algorithm. Electrochem Commun 1:289–294

    Article  CAS  Google Scholar 

  136. Nann T, Heinze J (2003) Simulation in electrochemistry using the finite element part 2: scanning electrochemical microscopy. Electrochim Acta 48:3975–3880

    Article  CAS  Google Scholar 

  137. Gavaghan DJ, Gillow K, Süli E (2006) Adaptive finite element methods in electrochemistry. Langmuir 22:10666–10682

    Article  CAS  Google Scholar 

  138. Harriman K, Gavaghan DJ, Houston P, Kay D, Süli E (2000) Adaptive finite element simulation of currents at microelectrodes to a guaranteed accuracy. ECE and EC 2 E mechanisms at channel microband electrodes. Electrochem Commun 2:576–585

    Article  CAS  Google Scholar 

  139. Harriman K, Gavaghan DJ, Houston P, Süli E (2000) Adaptive finite element simulation of currents at microelectrodes to a guaranteed accuracy. An E reaction at a channel microband electrode. Electrochem Commun 2:567–575

    Article  CAS  Google Scholar 

  140. Harriman K, Gavaghan DJ, Houston P, Süli E (2000) Adaptive finite element simulation of currents at microelectrodes to a guaranteed accuracy. Application to a simple model problem. Electrochem Commun 2:150–156

    Article  CAS  Google Scholar 

  141. Harriman K, Gavaghan DJ, Houston P, Süli E (2000) Adaptive finite element simulation of currents at microelectrodes to a guaranteed accuracy. First-order EC’ mechanism at inlaid and recessed discs. Electrochem Commun 2:163–170

    Article  CAS  Google Scholar 

  142. Harriman K, Gavaghan DJ, Houston P, Süli E (2000) Adaptive finite element simulation of currents at microelectrodes to a guaranteed accuracy. Theory. Electrochem Commun 2:157–162

    Article  CAS  Google Scholar 

  143. Harriman K, Gavaghan DJ, Süli E (2003) Adaptive finite element simulation of chronoamperometry at microdisc electrodes. Electrochem Commun 5:519–529

    Article  CAS  Google Scholar 

  144. Harriman K, Gavaghan DJ, Süli E (2004) Time-dependent EC’, ECE and EC2E mechanisms at microdisc electrodes: simulation using adaptive finite element methods. J Electroanal Chem 569:35–46

    Article  CAS  Google Scholar 

  145. Rudolph M (2002) Digital simulation on unequally spaced grids. Part 1. Critical remarks on using the point method by discretisation on a transformed grid. J Electroanal Chem 529: 97–108

    Article  CAS  Google Scholar 

  146. Gavaghan DJ (1998) An exponentially expanding mesh ideally suited to the fast and efficient simulation of diffusion processes at microdisc electrodes. 3. Application to voltammetry. J Electroanal Chem 456:25–35

    Article  CAS  Google Scholar 

  147. Newman J (1966) Current distribution on a rotating disk below the limiting current. J Electrochem Soc 113:1235–1241

    Article  CAS  Google Scholar 

  148. Michael AC, Wightman RM, Amatore CA (1989) Microdisk electrodes. Part 1. Digital simulation with a conformal map. J Electroanal Chem 267:33–45

    Article  CAS  Google Scholar 

  149. Safford LK, Weaver MJ (1991) Cyclic voltammetric wave-shapes for microdisk-electrodes: coupled effects of solution resistance, double-layer capacitance, and finite electrochemical kinetics. J Electroanal Chem 312:69–96

    Article  CAS  Google Scholar 

  150. Deakin MR, Wightman RM, Amatore CA (1986) Electrochemical kinetics at microelectrodes. Part II. Cyclic voltammetry at band electrodes. J Electroanal Chem 215:49–61

    CAS  Google Scholar 

  151. Amatore CA, Deakin MR, Wightman RM (1986) Electrochemical kinetics at microelectrodes. Part I. Quasi-reversible electron transfer at cylinders. J Electroanal Chem 206:23–36

    CAS  Google Scholar 

  152. Jin B, Qian W, Zhang Z, Shi H (1996) Application of the finite analytic numerical method. Part 1. Diffusion problems on coplanar and elevated interdigitated microarray band electrodes. J Electroanal Chem 411:29–36

    Article  Google Scholar 

  153. Jin B, Qian W, Zhang Z, Shi H (1996) Application of the finite analytic numerical method. Part 3. Digital simulation of charge transfer to a micro-ring electrode interface. J Electroanal Chem 417:45–51

    Article  CAS  Google Scholar 

  154. Jin BK, Shi HS, Zhang ZX (1996) Equation of voltammetric waves controlled by diffusion, charge transfer and chemical reactions at ultamicroband electrode. Chem J Chin Univ 17:1052–1055 [in Chinese, Eng. abstract]

    Google Scholar 

  155. Qian W, Jin B, Diao G, Zhang Z, Shi H (1996) Application of a finite analytic numerical method. Part 2. Digital simulation of charge transfer to an oblate hemispheroid microelectrode and experiment verification. J Electranal Chem 414:1–10

    Article  Google Scholar 

  156. Qian W, Jin B, Shi H, Zhang Z (1997) Finite analytic solution and finite analytic numerical method for solving two-dimensional diffusion problems on microelectrodes. J Electroanal Chem 439:29–36

    Article  CAS  Google Scholar 

  157. Qian W, Jin BK, Shi HS, Yu JS, Zhang ZX (1997) Digital simulation of chronoamperometric current at microdisk electrode and its verification. Acta Chim Sin 55:1108–1115

    CAS  Google Scholar 

  158. Varco Shea T, Bard AJ (1987) Digital simulation of homogeneous chemical reactions coupled to heterogeneous electron transfer and applications at platinum/mica/platinum ultramicroband electrodes. Anal Chem 59:2101–2111

    Article  Google Scholar 

  159. Bieniasz LK, Britz D (2001) Chronopotentiometry at a microband electrode: simulation study using a Rosenbrock time integration scheme for differential-algebraic equations and a direct sparse solver. J Electroanal Chem 503:141–152

    Article  CAS  Google Scholar 

  160. Britz D, Chandra S, Strutwolf J, Wong DKY (2010) Diffusion-limited chronoamperometry at conical-tip microelectrodes. Electrochim Acta 55:1272–1277

    Article  CAS  Google Scholar 

  161. Britz D, Poulsen K, Strutwolf J (2005) Reference values of the diffusion-limited chronoamperometric current at a microband electrode. Electrochim Acta 51:333–339. See Erratum, ibid. 53:7805 (2008)

    Google Scholar 

  162. Amphlett JL, Denuault G (1998) Scanning electrochemical microscopy (SECM): an investigation of the effects of tip geometry on amperometric tip response. J Phys Chem B 102:9946–9951

    Article  CAS  Google Scholar 

  163. Barker AL, Macpherson JV, Slevin CJ, Unwin PR (1998) Scanning electrochemical microscopy (SECM) as a probe of transfer processes in two-phase systems: theory and experimental applications of SECM-induced transfer with arbitrary partition coefficients, diffusion coefficients, and interfacial kinetics. J Phys Chem B 102:1586–1598

    Article  CAS  Google Scholar 

  164. Barker AL, Unwin PR, Amemiya S, Zhou J, Bard AJ (1999) Scanning electrochemical microscopy (SECM) in the study of electron transfer kinetics at liquid/liquid interfaces: beyond the constant composition approach. J Phys Chem B 103:7260–7269

    Article  CAS  Google Scholar 

  165. Barker AL, Unwin PR, Zhang J (2001) Measurement of the forward and back rate constants for electron transfer at the interface between two immiscible electrolyte solutions using scanning electrochemical microscopy (SECM): theory and experiment. Electrochem Commun 3:372–378

    Article  CAS  Google Scholar 

  166. Barker AL, Unwin PR (2001) Measurement of solute partitioning across liquid/liquid interfaces using scanning electrochemical microscopy - double potential step chronoamperometry (SECM-DPSC): principles, theory, and application to ferrocenium ion transfer across the 1,2-dichloroethane/aqueous interface. J Phys Chem B 105:12019–12031

    Article  CAS  Google Scholar 

  167. Cornut R, Lefrou C (2007) New analytical approximations for negative feedback currents with a microdisk SECM tip. J Electroanal Chem 604:91–100

    Article  CAS  Google Scholar 

  168. Demaille C, Unwin PR, Bard AJ (1996) Scanning electrochemical microscopy. 33. Application to the study of ECE/DISP Reactions. J Phys Chem 100:14137–14143

    Article  CAS  Google Scholar 

  169. Georganopoulou DG, Caruana DJ, Strutwolf J, Williams DE (2000) Electron transfer mediated by glucose oxidase at the liquid/liquid interface. Faraday Discuss 116:109–118

    Article  CAS  Google Scholar 

  170. Macpherson JV, Unwin PR (1996) Scanning electrochemical microscope-induced dissolution: theory and experiment for silver chloride dissolution kinetics in aqueous solution without supporting electrolyte. J Phys Chem 100:19475–19483

    Article  CAS  Google Scholar 

  171. Martin RD, Unwin PR (1997) Scanning electrochemical microscopy: theory and experiment for the positive feedback mode with unequal diffusion coefficients of the redox mediator couple. J Electroanal Chem 439:123–136

    Article  CAS  Google Scholar 

  172. Martin RD, Unwin PR (1998) Theory and experiment for the substrate generation/tip collection mode of the scanning electrochemical microscope: application as an approach for measuring the diffusion coefficient ratio of a redox couple. Anal Chem 70:276–284

    Article  CAS  Google Scholar 

  173. Mauzeroll J, Hueske EA, Bard AJ (2003) Scanning electrochemical microscopy. 48. Hg/Pt hemispherical ultramicroelectrodes: fabrication and characterization. Anal Chem 75:3880–3889

    Article  CAS  Google Scholar 

  174. Selzer Y, Mandler D (2000) Scanning electrochemical microscopy. Theory of the feedback mode for hemispherical ultramicroelectrodes: steady-state and transient behavior. Anal Chem 72:2383–2390

    Article  CAS  Google Scholar 

  175. Shao Y, Mirkin MV (1998) Probing ion transfer at the liquid/liquid interface by scanning electrochemical microscopy (SECM). J Phys Chem B 102:9915–9921

    Article  CAS  Google Scholar 

  176. Sklyar O, Wittstock G (2002) Numerical simulations of complex nonsymmetrical 3D systems for scanning electrochemical microscopy using the boundary element method. J Phys Chem B 106:7499–7508

    Article  CAS  Google Scholar 

  177. Sklyar O, Ufheil J, Heinze J, Wittstock G (2003) Application of the boundary element method numerical simulations for characterization of heptode ultramicroelectrodes in SECM experiments. Electrochim Acta 49:117–128

    Article  CAS  Google Scholar 

  178. Sklyar O (2004) Modelling scanning electrochemical microscopy (SECM) experiments on microstructured functionalised surfaces. Ph.D. thesis, Universität Oldenburg, Oldenburg

    Google Scholar 

  179. Slevin CJ, Macpherson JV, Unwin PR (1997) Measurement of local reactivity at liquid/solid, liquid/liquid, and liquid/gas interfaces with the scanning electrochemical microscope: principles, theory, and applications of the double potential step chronoamperometric mode. J Phys Chem B 101:10851–10859

    Article  CAS  Google Scholar 

  180. Strutwolf J, Barker AL, Gonsalves M, Caruana DJ, Unwin PR, Williams DE, Webster JPR (2000) Probing liquid|liquid interfaces using neutron reflection measurements and scanning electrochemical microscopy. J Electroanal Chem 483:163–173

    Article  CAS  Google Scholar 

  181. Unwin PR, Bard AJ (1991) Scanning electrochemical microscopy. 9. Theory and application of the feedback mode to the measurement of following chemical reaction rates in electrode processes. J Phys Chem 95:7814–7824

    Article  CAS  Google Scholar 

  182. Britz D, Strutwolf J (2013) Digital simulation of chronoamperometry at an electrode within a hemispherical polymer drop containing an enzyme: comparison of a hemispherical with a flat disk electrode. Biosens Bioelectron 50:269–277

    Article  CAS  Google Scholar 

  183. Britz D, Strutwolf J (2015) Digital simulation of chronoamperometry at a disk electrode under a flat polymer film containing an enzyme. Electrochim Acta 152:302–307

    Article  CAS  Google Scholar 

  184. Che G, Dong S (1992) Application of ultramicroelectrodes in studies of homogeneous catalytic reactions– Part II. A theory of quasi-first and second-order homogeneous catalytic reactions. Electrochim Acta 37:2695–2699

    Article  CAS  Google Scholar 

  185. Che G, Dong S (1992) Application of ultramicroelectrodes in studies of homogeneous catalytic reactions– Part III. The condition for quasi-first and second order homogeneous catalytic reactions at ultramicrodisk electrodes in the steady state. Electrochim Acta 37:2701–2705

    Article  CAS  Google Scholar 

  186. Dong S, Che G (1992) The application of an ultramicroelectrode in homogeneous catalytic reaction – Part I. General characteristic of a homogeneous catalytic reaction at an ultramicroelectrode with arbitrary geometry under steady state. Electrochim Acta 37:2587–2589

    Article  CAS  Google Scholar 

  187. Kottke PA, Kranz C, Kwon YK, Masson JF, Mizaikoff B, Fedorov AG (2008) Theory of polymer entrapped enzyme ultramicroelectrodes: fundamentals. J Electroanal Chem 612:208–218

    Article  CAS  Google Scholar 

  188. Meena A, Rajendran L (2010) Analytical solution of system of coupled nonlinear reaction diffusion equations. Part II: direct reaction of substrate at underlying microdisc surface. J Electroanal Chem 650:143–151

    CAS  Google Scholar 

  189. Phanthong C, Somasundrum M (2003) The steady state current at a microdisk biosensor. J Electroanal Chem 558:1–8

    Article  CAS  Google Scholar 

  190. Cope DK, Scott CH, Kalapathy U, Tallman DE (1990) Transient behavior at planar microelectrodes. Diffusion current at a band electrode by an integral equation method. Part II. J Electroanal Chem 280:27–35

    CAS  Google Scholar 

  191. Cope DK, Tallman DE (1990) Transient behavior at planar microelectrodes. Diffusion current at the disk electrode by the integral equation method. J Electroanal Chem 285:79–84

    CAS  Google Scholar 

  192. Cope DK, Tallman DE (1990) Transient behavior at planar microelectrodes. A comparison of diffusion current at ring, band and disk electrodes. J Electroanal Chem 285:85–92

    Article  CAS  Google Scholar 

  193. Engblom SO, Cope DK, Tallman DE (1996) Diffusion current at the tubular band electrode by the integral equation method. J Electroanal Chem 406:23–31

    Article  Google Scholar 

  194. Bieniasz LK (2015) Modelling electroanalytical experiments by the integral equation approach. Springer, Heidelberg

    Google Scholar 

  195. Bieniasz LK (1992) An efficient numerical method of solving the Abel integral equation for cyclic voltammetry. Comput Chem 16:311–317

    Article  CAS  Google Scholar 

  196. Bieniasz LK (2008) An adaptive Huber method with local error control, for the numerical solution of the first kind Abel integral equations. Computing 83:25–39

    Article  Google Scholar 

  197. Bieniasz LK (2008) Cyclic voltammetric current functions determined with a prescribed accuracy by the adaptive Huber method for Abel integral equations. Anal Chem 80:9659–9665

    Article  CAS  Google Scholar 

  198. Bieniasz LK (2010) Automatic simulation of cyclic voltammograms by the adaptive Huber method for weakly singular second kind Volterra integral equations. Electrochim Acta 55:721–728

    Article  CAS  Google Scholar 

  199. Bieniasz LK (2010) Automatic simulation of cyclic voltammograms by the adaptive Huber method for systems of weakly singular Volterra integral equations. J Electroanal Chem 642:127–134

    Article  CAS  Google Scholar 

  200. Bieniasz LK (2010) An adaptive Huber method for weakly singular second kind Volterra integral equations with nonlinear dependencies between unknowns and their integrals. Computing 87:35–54

    Article  Google Scholar 

  201. Bieniasz LK (2011) An adaptive Huber method for nonlinear systems of weakly singular second kind Volterra integral equations. Appl Math Comput 217:5622–5631

    Google Scholar 

  202. Bieniasz LK (2011) Analysis of the applicability of the integral equation method in the theory of transient electroanalytical experiments for homogeneous reaction-diffusion systems: the case of planar electrodes. J Electroanal Chem 657:91–97

    Article  CAS  Google Scholar 

  203. Bieniasz LK (2011) Extension of the adaptive Huber method for solving integral equations occurring in electroanalysis, onto Kernel function representing fractional diffusion. Electroanalysis 23:1506–1511

    Article  CAS  Google Scholar 

  204. Bieniasz LK (2011) Automatic simulation of electrochemical transients at cylindrical wire electrodes, by the adaptive Huber method for Volterra integral equations. J Electroanal Chem 662:371–378

    Article  CAS  Google Scholar 

  205. Bieniasz LK (2011) Extension of the adaptive Huber method for Volterra integral equations arising in electroanalytical chemistry, to convolution kernels \(\exp [-\alpha (t-\tau )]\) erex \(\{[\beta (t-\tau )]^{1/2}\}\) and \(\exp [-\alpha (t-\tau )]\) daw \(\{[\beta (t-\tau )]^{1/2}\}\). J Comput Methods Sci Eng 11:323–338

    Google Scholar 

  206. Bieniasz LK (2012) Automatic simulation of electrochemical transients by the adaptive Huber method for Volterra integral equations involving kernel terms \(\exp [-\alpha (t-\tau )]\mbox{ erex}\{[\beta (t-\tau )]\}\) and \(\exp [-\alpha (t-\tau )]\mbox{ daw}\{[\beta (t-\tau )]\}\). J Math Chem 50:765–781

    Google Scholar 

  207. Bieniasz LK (2012) Automatic solution of integral equations pertinent to diffusion with first order homogeneous reactions at cylindrical wire electrodes. J Electroanal Chem 674:38–47

    Article  CAS  Google Scholar 

  208. Bieniasz LK (2012) Automatic simulation of electrochemical transients assuming finite diffusion space at planar interfaces, by the adaptive Huber method for Volterra integral equations. J Electroanal Chem 684:20–31

    Article  CAS  Google Scholar 

  209. Bieniasz LK (2013) Automatic solution of the Singh and Dutt integral equations for channel or tubular electrodes, by the adaptive Huber method. J Electroanal Chem 693:95–104

    Article  CAS  Google Scholar 

  210. Bieniasz LK (2013) Automatic solution of integral equations describing electrochemical transients under conditions of internal spherical diffusion. J Electroanal Chem 694:104–113

    Article  CAS  Google Scholar 

  211. Bieniasz LK (2013) Automatic solution of integral equations describing electrochemical transients at dropping mercury electrodes. J Electroanal Chem 705:44–51

    Article  CAS  Google Scholar 

  212. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran. The art of scientific computing, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  213. Balslev H, Britz D (1992) Direct digital simulation of the steady-state limiting current at a rotating disk electrode for a complex mechanism. Acta Chem Scand 46:949–955

    Article  CAS  Google Scholar 

  214. Britz D, Østerby O, Strutwolf J (2012) Minimum grid digital simulation of chronoamperometry at a disk electrode. Electrochim Acta 78:365–376

    Article  CAS  Google Scholar 

  215. Gourlay AR, McKee S (1977) The construction of hopscotch methods for parabolic and elliptic equations in two space dimensions with a mixed derivative. J Comput Appl Math 3:201–206

    Article  Google Scholar 

  216. Amatore CA, Fosset B (1992) Space variables well fitted for the study of steady state and near-steady-state diffusion at a microdisk. J Electroanal Chem 328:21–32

    Article  CAS  Google Scholar 

  217. Fosset B, Amatore CA, Bartelt JE, Michael AC, Wightman RM (1991) Use of conformal maps to model the voltammetric response of collector-generator double-band electrodes. Anal Chem 63:306–314

    Article  CAS  Google Scholar 

  218. Lavagnini I, Pastore P, Magno F, Amatore CA (1991) Performance of a numerical method based on the hopscotch algorithm and on an oblate spheroidal space coordinate- expanding time grid for simulation of voltammetric curves at an inlaid disk microelectrode. J Electroanal Chem 316:37–47

    Article  CAS  Google Scholar 

  219. Pastore P, Magno F, Lavagnini I, Amatore C (1991) Digital simulation via the hopscotch algorithm of a microelectrode-based channel flow-through amperometric detector. J Electroanal Chem 301:1–13

    Article  CAS  Google Scholar 

  220. Postlethwaite TA, Hutchinson JE, Murray R, Fosset B, Amatore C (1996) Interdigitated array electrodes as an alternative to the rotating ring-disk electrode for determination of the reaction products of dioxygen reduction. Anal Chem 68:2951–2958

    Article  CAS  Google Scholar 

  221. Shoup D, Szabo A (1984) Hopscotch: an algorithm for the numerical solution of electrochemical problems. J Electroanal Chem 160:1–17

    Article  CAS  Google Scholar 

  222. Shoup D, Szabo A (1986) Explicit hopscotch and implicit finite-difference algorithms for the Cottrell problem: exact analytical results. J Electroanal Chem 199:437–441

    Article  CAS  Google Scholar 

  223. Danaee A, Evans DJ (1988) A composite hopscotch method of increased accuracy. Int J Comput Math 24:181–198

    Article  Google Scholar 

  224. Lapidus L, Pinder GF (1982) Numerical solution of partial differential equations in science and engineering. Wiley, New York

    Google Scholar 

  225. Hunsdorfer WH, Verwer JG (1989) Stability and convergence of the Peaceman-Rachford ADI method for initial-boundary value problems. Math Comput 53:81–101

    Article  Google Scholar 

  226. Amatore C, Oleinick A, Svir I (2005) Diffusion within nanometric and micrometric spherical-type domains by nanometric ring or pore active interfaces. Part 1: conformal mapping approach. J Electroanal Chem 575:103–123

    Article  CAS  Google Scholar 

  227. Klymenko OV, Evans RG, Hardacre C, Svir IB, Compton RG (2004) Double potential step chronoamperometry at microdisk electrodes: simulating the case of unequal diffusion coefficients. J Electroanal Chem 571:211–221

    Article  CAS  Google Scholar 

  228. Klymenko OV, Oleinick AI, Amatore C, Svir I (2007) Reconstruction of hydrodynamic flow profiles in a rectangular channel using electrochemical methods of analysis. Electrochim Acta 53:1100–1106

    Article  CAS  Google Scholar 

  229. Svir IB, Klimenko AV, Compton RG (2000) Two approaches for digital simulation of the channel flow cell problem. Radioelek Informatika 2:29–33

    Google Scholar 

  230. Svir IB, Golovenko VM (2001) Simulation of the microdisc problem in spherical coordinates. Application to electrogenerated chemiluminescence. Electrochem Commun 3:11–15

    Article  CAS  Google Scholar 

  231. Svir I, Oleinick A, Yunus K, Fisher AC, Wadhawan JD, Davies TJ, Compton RG (2005) Theoretical and experimental study of the ECE mechanism at microring electrodes. J Electroanal Chem 578:289–299

    Article  CAS  Google Scholar 

  232. Amatore C, Oleinick A, Svir I (2008) Theoretical analysis of microscopic ohmic drop effects on steady-state and transient voltammetry at the disk microelectrode: a quasi-conformal mapping modeling and simulation. Anal Chem 80:7947–7956

    Article  CAS  Google Scholar 

  233. Svir IB, Klimenko AV, Compton RG (2001) The simulation of convective diffusion transport of matter to a channel double microband electrode and its application to electrogenerated chemiluminescence. Radiotekhnika 118:92–101

    Google Scholar 

  234. Menshykau D, Cortina-Puig M, del Campo FJ, Muñoz FX, Compton RG (2010) Plane-recessed disk electrodes and their arrays in transient generator-collector mode: the measurement of the rate of the chemical reaction of electrochemically generated species. J Electroanal Chem 648:28–35

    Article  CAS  Google Scholar 

  235. Bard AJ, Mirkin MV, Unwin PR, Wipf DO (1992) Scanning electrochemical microscopy. 12. Theory and experiment of the feedback mode with finite heterogeneous electron-transfer kinetics and arbitrary substrate size. J Phys Chem 96:1861–1868

    Article  CAS  Google Scholar 

  236. Fan FRF, Kwak J, Bard AJ (1996) Single molecule electrochemistry. J Am Chem Soc 118:9669–9675

    Article  CAS  Google Scholar 

  237. Macpherson JV, Unwin PR (1994) A novel approach to the study of dissolution kinetics using the scanning electrochemical microscope: theory and application to the dissolution of CuSO4.5H2O in aqueous sulfuric acid solutions. J Phys Chem 98:1704–1713

    Article  CAS  Google Scholar 

  238. Macpherson JV, Unwin PR (1997) Determination of the diffusion coefficient of hydrogen in aqueous solution using single and double potential step chronoamperometry at a disk ultramicroelectrode. Anal Chem 69:2063–2069

    Article  CAS  Google Scholar 

  239. Martin RD, Unwin PR (1998) Scanning electrochemical microscopy. Kinetics of chemical reactions following electron-transfer measured with the substrate-generation-tip-collection mode. J Chem Soc Faraday Trans 94:753–759

    CAS  Google Scholar 

  240. Pierce DT, Unwin PR, Bard AJ (1992) Scanning electrochemical microscopy. 17. Studies of enzyme-mediator kinetics for membrane- and surface-immobilized glucose-oxidase. Anal Chem 64:1795–1804

    Article  CAS  Google Scholar 

  241. Stone HL (1968) Iterative solution of implicit approximations of multidimensional partial differential equations. SIAM J Numer Anal 5:530–558

    Article  Google Scholar 

  242. Weinstein FG, Stone HL, Kwan TV (1969) Iterative procedure for solution of systems of parabolic and elliptic equations in three dimensions. Ind Eng Chem Fundam 8:281–287

    Article  CAS  Google Scholar 

  243. Alden JA, Booth J, Compton RG, Dryfe RAW, Sanders GHW (1995) Diffusional mass transport to microband electrodes of practical geometries: a simulation study using the strongly implicit procedure. J Electroanal Chem 389:45–54

    Article  Google Scholar 

  244. Alden JA, Compton RG (1996) A comparison of finite difference algorithms for the simulation of microband electrode problems with and without convective flow. J Electroanal Chem 402:1–10

    Article  Google Scholar 

  245. Alden JA, Hutchinson F, Compton RG (1997) Can cyclic voltammetry at microdisc electrodes be approximately described by one-dimensional diffusion? J Phys Chem B 101:949–958

    Article  CAS  Google Scholar 

  246. Alden JA, Compton RG (1997) A general method for electrochemical simulations. 1. Formulation of the strategy for two-dimensional simulations. J Phys Chem B 101:8941–8954

    Article  CAS  Google Scholar 

  247. Alden JA, Feldman MA, Hill E, Prieto F, Oyama M, Coles BA, Compton RG (1998) Channel microband electrode arrays for mechanistic electrochemistry. Two -dimensional voltammetry: transport-limited currents. Anal Chem 70:1707–1720

    Article  CAS  Google Scholar 

  248. Bidwell MJ, Alden JA, Compton RG (1996) Hydrodynamic voltammetry with channel microband electrodes: the simulation of voltammetric waveshapes. J Electroanal Chem 417:119–128

    Article  CAS  Google Scholar 

  249. Prieto F, Oyama M, Coles BA, Alden JA, Compton RG, Okazaki S (1998) Mechanistic determination using arrays of variable sized channel microband electrodes. The oxidation of 2,3,7,8 -tetra-methoxythianthrene in the presence of pyridine in acetonitrile solution. Electroanalysis 10:685–690

    Article  CAS  Google Scholar 

  250. Krylov A (1931) On the numerical solution of equations by which the frequencies of small vibrations of material systems in technical problems are determined. Izv Akad Nauk SSSR VII:491–539 [in Russian]

    Google Scholar 

  251. Saad Y (1996) Iterative methods for sparse linear systems. PWS Publishing Company, Boston

    Google Scholar 

  252. Saad Y (2003) Iterative methods for solving sparse linear systems. SIAM Publications, Philadelphia

    Book  Google Scholar 

  253. Wesseling P (1992) An introduction to multigrid methods. Wiley, New York

    Google Scholar 

  254. Alden JA, Compton RG (1997) A general method for electrochemical simulations. 2. Application to the simulation of steady-state currents at microdisk electrodes: homogeneous and heterogeneous kinetics. J Phys Chem B 101:9606–9616

    Article  CAS  Google Scholar 

  255. Bard AJ, Denuault G, Friesner RA, Dornblaser BC, Tuckerman LS (1991) Scanning electrochemical microscopy: theory and application of the transient (chronoamperometric) SECM response. Anal Chem 63:1282–1288

    Article  CAS  Google Scholar 

  256. Welford PJ, Brookes BA, Climent V, Compton RG (2001) The hanging meniscus contact: geometry induced diffusional overpotential. The reduction of oxygen in dimethylsulphoxide at Au(111). J Electroanal Chem 513:8–15

    Article  CAS  Google Scholar 

  257. Brandt A (1977) Multi-level adaptive solutions to boundary-value problems. Math Comput 31:333–390

    Article  Google Scholar 

  258. Alden JA, Compton RG (1996) The multigrid method, MGD1: an efficient and stable approach to electrochemical modelling. The simulaton of double electrode problems. J Electroanal Chem 415:1–12

    Google Scholar 

  259. Zhang J (1997) Accelerated multigrid high accuracy solution of the convection-diffusion equation with high Reynolds number. Numer Methods PDEs 13:77–92

    Article  CAS  Google Scholar 

  260. Zhang J (2000) A note on an accelerated high-accuracy multigrid solution of the -diffusion equation with high Reynolds number. Numer Methods PDEs 16:1–10

    Article  Google Scholar 

  261. Duff IS, Reid JK (1979) Some design features of a sparse matrix code. ACM Trans Math Soft 5:18–35

    Article  Google Scholar 

  262. http://hsl.rl.ac.uk/archive/hslarchive.html

  263. http://www.netlib.org

  264. Zlatev Z, Wasniewski J, Schaumburg K (1981) Y12M. Solution of large and sparse systems of linear algebraic equations. Documentation and subroutines. In: Goos G, Hartmanis J (eds) Lecture notes in computer science, vol 121. Springer, Berlin

    Google Scholar 

  265. Smith GD (1985) Numerical solution of partial differential equations, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  266. Britz D, Strutwolf J, Thøgersen L (2001) Investigation of some starting protocols for BDF (FIRM) in electrochemical digital simulation. J Electroanal Chem 512:119–123

    Article  CAS  Google Scholar 

  267. Newman J (1966) Resistance for flow of current to a disk. J Electrochem Soc 113:501–502

    Article  CAS  Google Scholar 

  268. Spiegel MR (1963) Advanced calculus. McGraw-Hill, New York

    Google Scholar 

  269. Morse PM, Feshbach H (1953) Methods in theoretical physics, 2 vols. McGraw-Hill, New York.

    Google Scholar 

  270. Sneddon IN (1966) Mixed boundary value problems in potential theory. North-Holland Publishing Co., Amsterdam

    Google Scholar 

  271. Verbrugge MW, Baker DR (1992) Transient diffusion and migration to a disk electrode. J Phys Chem 96:4572–4580

    Article  CAS  Google Scholar 

  272. Svir IB, Oleinick AI (2001) The electrogenerated chemiluminescence kinetics at a microdisk electrode. J Electroanal Chem 499:30–38

    Article  CAS  Google Scholar 

  273. Oleinick A, Amatore C, Svir I (2004) Efficient quasi-conformal map for simulation of diffusion at disk microelectrodes. Electrochem Commun 6:588–594

    Article  CAS  Google Scholar 

  274. Fornberg B (1988) Generation of finite difference formulas on arbitrarily spaced grids. Math Comput 51:699–706

    Article  Google Scholar 

  275. Strutwolf J, Britz D (2004) Higher-order discretisations in electrochemical digital simulation. Part 5. Application to stationary ultramicrodisk electrode simulation. J Electroanal Chem 566:15–23

    Article  CAS  Google Scholar 

  276. Cutress IJ, Compton RG (2010) Theory of square, rectangular, and microband electrodes through explicit GPU simulation. J Electroanal Chem 645:159–166

    Article  CAS  Google Scholar 

  277. Strutwolf J (2005) Computational study of chronoamperometry at rectangular microelectrodes. Electroanalysis 17:1547–1554

    Article  CAS  Google Scholar 

  278. Woodvine HL, Terry JG, Walton AJ, Mount AR (2010) The development and characterisation of square microfabricated electrode systems. Analyst 135:1058–1065

    Article  CAS  Google Scholar 

  279. Fulian Q, Williams NA, Fisher AC (1999) Computational electrochemistry: three-dimensional boundary element simulations of double electrode geometries. Electrochem Commun 1:124–127

    Article  CAS  Google Scholar 

  280. Sklyar O, Treutler TH, Vlachopoulos N, Wittstock G (2005) The geometry of nanometer-sized electrodes and its influence on electrolytic currents and metal deposition processes in scanning tunnelling and scanning electrochemical microscopy. Surf Sci 597:181–195

    Article  CAS  Google Scholar 

  281. Filice FP, Li MSM, Henderson JD, Ding Z (2015) Three-dimensional electrochemical functionality of an interdigitated array electrode by scanning electrochemical microscopy. J Phys Chem C 119:21473–21482

    Article  CAS  Google Scholar 

  282. Kolev SD, Simons JHM, van der Linden W (1993) Mathematical modelling of the chronoamperometric response of an array of rectangular microelectrodes. Anal Chim Acta 273:71–80

    Article  CAS  Google Scholar 

  283. Beriet C, Ferrigno R, Girault HH (2000) Simulation of the chronoamperometric response of a regular array of micro-disc electrodes. J Electroanal Chem 486:56–64

    Article  CAS  Google Scholar 

  284. Lee HJ, Beriet C, Ferrigno R, Girault HH (2001) Cyclic voltammetry at a regular microdisc electrode array. J Electroanal Chem 502:138–145

    Article  CAS  Google Scholar 

  285. Godino N, Borrisé X, Muñoz FX, del Campo FJ, Compton RG (2009) Mass transport to nanoelectrode arrays and limitations of the diffusion domain approach: theory and experiment. J Phys Chem C 113:11119–11125

    Article  CAS  Google Scholar 

  286. Zoski CG, Wijesinghe M (2010) Electrochemistry at ultramicroelectrode arrays and nanoelectrode ensembles of macro- and ultramicroelectrode dimensions. Israel J Chem 50:347–359

    Article  CAS  Google Scholar 

  287. Aoki K, Tokuda K, Matsuda HJ (1987) Theory of chronoamperometric curves at microband electrodes. J Electroanal Chem 225:19–32

    Article  CAS  Google Scholar 

  288. Aoki K, Tokuda K, Matsuda HJ (1987) Derivation of an approximate equation for chronoamperometric curves at microband electrodes and its experimental verification. J Electroanal Chem 230:61–67

    Article  CAS  Google Scholar 

  289. Kühnel W, Rademacher H-B (2007) Liouville’s theorem in conformal geometry. J Math Pure Appl 88:251–260

    Article  Google Scholar 

  290. Douglas J Jr, Rachford H Jr (1956) On the numerical solution of heat conduction problems in two and three space dimensions. Trans Am Math Soc 82:421–439

    Article  Google Scholar 

  291. Brian PLT (1961) A finite-difference method of high-order accuracy for the solution of three-dimensional transient heat conduction problems. AIChE J 7:367–370

    Article  CAS  Google Scholar 

  292. Douglas J Jr (1962) Alternating direction methods for three space variables. Numer Math 4:41–63

    Article  Google Scholar 

  293. Douglas J Jr, Gunn JE (1964) A general formulation of alternating direction methods. Numer Math 6:428–453

    Article  Google Scholar 

  294. Fairweather G, Mitchell AR (1965) A new alternating direction method for parabolic equations in three space variables. J Soc Ind Appl Math 13:957–965

    Article  Google Scholar 

  295. Dai W, Nassar R (1998) A second-order ADI scheme for three-dimensional parabolic differential equations. Numer Methods PDEs 14:159–168

    Article  Google Scholar 

  296. Thomas LH (1949) Elliptic problems in linear difference equations over a network. Watson Scientific Computing Laboratory, Columbia University, New York

    Google Scholar 

  297. Hairer E, Wanner G (1991) Solving ordinary differential equations II. Stiff and differential-algebraic problems. Springer, Berlin

    Book  Google Scholar 

  298. Britz D, Oldham KB, Østerby O (2009) Strategies for damping the oscillations of the alternating direction implicit method of simulation of diffusion-limited chronoamperometry at disk electrodes. Electrochim Acta 54:4822–4828

    Article  CAS  Google Scholar 

  299. Schultze J, Tsakova V (1999) Electrochemical microsystem technologies: from fundamental research to technical systems. Electrochim Acta 44:3605–3627

    Article  CAS  Google Scholar 

  300. Suzuki H (2000) Advances in the microfabrication of electrochemical sensors and systems. Electroanalysis 12:703–715

    Article  CAS  Google Scholar 

  301. Belmont C, Tercier ML, Buffle J, Fiaccabrino GC, Kondelka-Hep M (1996) Mercury-plated iridium-based microelectrode arrays for trace metals detection by voltammetry: optimum conditions and reliability. Anal Chim Acta 329:203–214

    Article  CAS  Google Scholar 

  302. Arrigan DWM (2004) Nanoelectrodes, nanoelectrode arrays and their applications. Analyst 129:1157–1165

    Article  CAS  Google Scholar 

  303. Aguiar FA, Gallant AJ, Rosamond MC, Rhodes A, Wood D, Kataky R (2007) Conical recessed gold microelectrode arrays produced during photolithographic methods: characterisation and causes. Electrochem Commun 9:879–885

    Article  CAS  Google Scholar 

  304. Berduque A, Lanyon YH, Beni V, Herzog G, Watson YE, Rodgers K, Stam F, Alderman J, Arrigan DWM (2007) Voltammetric characterisation of silicon-based microelectrode arrays and their application to mercury-free stripping voltammetry of copper ions. Talanta 71:1022–1030

    Article  CAS  Google Scholar 

  305. Lanyon YH, De Marzi G, Watson YE, Quinn AJ, Gleeson JP, Redmond G, Arrigan DWM (2007) Fabrication of nanopore array electrodes by focussed ion beam milling. Anal Chem 79:3048–3055

    Article  CAS  Google Scholar 

  306. Ordeig O, del Campo J, Muñoz FX, Banks CE, Compton RG (2007) Electroanalysis utilizing amperometric microdisk electrode arrays. Electroanalysis 19:1973–1986

    Article  CAS  Google Scholar 

  307. Huang XJ, O’Mahony AM, Compton RG (2009) Microelectrode arrays for electrochemistry: approaches to fabrication. Small 5:776–788

    Article  CAS  Google Scholar 

  308. Freeman NJ, Sultana R, Reza N, Woodvine H, Terry JG, Walton AJ, Brady CL, Schmueser I, Mount AR (2013) Comparison of the performance of an array of nanoband electrodes with a macro electrode with similar overall area. Phys Chem Chem Phys 15:8112–8118

    Article  CAS  Google Scholar 

  309. Scanlon MD, Berduque A, Strutwolf J, Arrigan DWM (2010) Flow-injection amperometry at microfabricated silicon-based μ-liquid-liquid interface arrays. Electrochim Acta 55:4234–4239

    Article  CAS  Google Scholar 

  310. Scanlon M, Strutwolf J, Blake A, Iacopino D, Quinn AJ, Arrigan DWM (2010) Ion-transfer electrochemistry at arrays of nanointerfaces between immiscible electrolyte solutions confined within silicon nitride nanopore membranes. Anal Chem 82:6115–6123

    Article  CAS  Google Scholar 

  311. Zachek MK, Takmakov P, Park J, Wightman RM, McCarty GS (2010) Simultaneous monitoring of dopamine concentration at spatially different brain locations in vivo. Biosens Bioelectron 25:1179–1185

    Article  CAS  Google Scholar 

  312. Said NAM, Twomey K, Ogurstov VI, Arrigan DWM, Herzog G (2011) Fabrication and electrochemical characterization of micro- and nanoelectrode arrays for sensor applications. J Phys: Conf Ser 307:012052

    Google Scholar 

  313. Fejtl M, Stett A, Nisch W, Boven KH, Möller A (2006) On micro-electrode array revival: its development, sophistication of recording, and stimulation. In: Taketani M, Baudry M (eds) Advances in network electrophysiology. Springer, New York, pp 24–37

    Chapter  Google Scholar 

  314. Ghane-Motlagh B, Sawan M (2013) Design and implementation challenges of microelectrode arrays: a review. Mater Sci Appl 4:483–495

    Google Scholar 

  315. Grygoryev K, Herzog G, Jackson N, Strutwolf J, Arrigan DWM, McDermott K, Galvin P (2014) Reversible integration of microfluidic devices with microelectrode arrays for neurobiological applications. BioNanoScience 4:263–275

    Article  Google Scholar 

  316. Amatore CA, Savéant JM, Tessier D (1983) Charge transfer at partially blocked surfaces: a model for the case of microscopic active and inactive sites. J Electroanal Chem 147:39–51

    Article  CAS  Google Scholar 

  317. Landsberg R, Thiele R (1966) Über den Einfluss inaktiver Oberflachenbereiche auf den Diffusionsgrenzstrom an rotierenden Scheibenelektroden und die Transitionszeit be1 galvanostatischen Messungen. Electrochim Acta 11:1243–1259

    Article  CAS  Google Scholar 

  318. Scheller F, Müller S, Landsberg R, Spitzer HJ (1968) Gesetzmässigkeit für den Diffusionsgrenzstrom an teilweise blockierten Modellelektroden. J Electroanal Chem 19:187–198

    Article  CAS  Google Scholar 

  319. Scheller F, Landsberg R, Müller S (1969) Zur Rührabhängigkeit des Grenzstromes an teilweise bedeckten rotierenden Scheibenelektroden bei relativ grossen Umdrehungszahlen. J Electroanal Chem 20:375–381

    Article  CAS  Google Scholar 

  320. Scheller F, Landsberg R, Wolf H (1970) Zur Bestimmung des Blockierungsgrades an teilweise blockierten Festelektroden. Electrochim Acta 15:525–531

    Article  CAS  Google Scholar 

  321. Juozėnas A, Šidlauskas V, Jurevičius D (1993) Chronopotentiometry on partially blocked electrodes. Digital simulation. Chemija:13–17

    Google Scholar 

  322. Baronas R, Ivanauskas F, Survila A (2000) Simulation of electrochemical behavior of partially blocked electrodes under linear potential sweep conditions. J Math Chem 27:267–278

    Article  CAS  Google Scholar 

  323. Chevallier FG, Davies TJ, Klymenko OV, Jiang L, Jones TGJ, Compton RG (2005) Numerical simulation of partially blocked electrodes under cyclic voltammetry conditions: influence of the block unit geometry on the global electrochemical properties. J Electroanal Chem 577:211–221

    Article  CAS  Google Scholar 

  324. Ferrigno R, Josserand J, Brevet PF, Girault HH (1998) Coplanar interdigitated band electrodes for electrosynthesis. Part 5: Finite element simulation of paired reactions. Electrochim Acta 44:587–595

    Article  CAS  Google Scholar 

  325. Slowinska K, Feldberg SW, Majda M (2003) An electrochemical time-of-flight technique with galvanostatic generation and potentiometric sensing. J Electroanal Chem 554–555:61–69

    Article  CAS  Google Scholar 

  326. Svir IB, Oleinick AI, Compton RG (2003) Dual microband electrodes: current distributions and diffusion layer ‘titrations’. Implications for electroanalytical measurements. J Electroanal Chem 560:117–126

    Article  CAS  Google Scholar 

  327. Fosset B, Amatore CA, Bartelt JE, Wightman RM (1991) Theory and experiment for the collector-generator triple-band electrode. Anal Chem 63:1403–1408

    Article  CAS  Google Scholar 

  328. Rajantie H, Strutwolf J, Williams DE (2001) Theory and practice of electrochemical titrations with dual microband electrodes. J Electroanal Chem 500:108–120

    Article  CAS  Google Scholar 

  329. Seddon BJ, Girault HH, Eddowes MJ (1989) Interdigitated microband electrodes: chronoamperometry and steady state currents. J Electroanal Chem 266:227–238

    Article  CAS  Google Scholar 

  330. Phillips CG, Stone HA (1997) Theoretical calculation of collection efficiencies for collector-generator microelectrode systems. J Electroanal Chem 437:157–165

    Article  CAS  Google Scholar 

  331. Amatore C, Oleinick AI, Svir IB (2003) Simulation of the double hemicylinder generator-collector assembly through conformal mapping technique. J Electroanal Chem 553:49–61

    Article  CAS  Google Scholar 

  332. Strutwolf J, Williams DE (2005) Electrochemical sensor design using coplanar and elevated interdigitated array electrodes. A computational study. Electroanalysis 17:169–177

    CAS  Google Scholar 

  333. Menshykau D, O’Mahoney AM, del Campo FJ, Munõz FX, Compton RG (2009) Microarrays of ring-recessed disk electrodes in transient generator-collector mode: theory and experiment. Anal Chem 81:9372–9382

    Article  CAS  Google Scholar 

  334. Cutress IJ, Wang Y, Limon-Petersen JG, Dale SEC, Rassaei L, Compton RG (2011) Dual-microdisk electrodes in transient generator-collector mode: experiment and theory. J Electroanal Chem 655:147–153

    Article  CAS  Google Scholar 

  335. Bell CG, Howell PD, Stone HA (2013) Time-dependent chronoamperometric response of dual inlaid disk electrodes. J Electroanal Chem 689:303–313

    Article  CAS  Google Scholar 

  336. Paixão TRLC, Richter EM, Brito-Neto JGA, Bertotti M (2006) Fabrication of a new generator-collector electrochemical micro-device: characterization and applications. Electrochem Commun 8:9–14

    Article  CAS  Google Scholar 

  337. Fiaccabrino GC, Koudelka-Hep M, Jeanneret S, van den Berg A, de Rooij NF (1994) Array of individually addressable microelectrodes. Sens Actuators B 18–19:675–677

    Article  Google Scholar 

  338. Barker AL, Unwin PR, Gardner JW, Rieley H (2004) A multi-electrode probe for parallel imaging in scanning electrochemical microscopy. Electrochem Commun 6:91–97

    Article  CAS  Google Scholar 

  339. Zoski CG, Yang N, He P, Berdondini L, Kouldelka-Hep M (2007) Addressable nanoelectrode membrane arrays: fabrication and steady-state behavior. Anal Chem 79:1474–1484

    Article  CAS  Google Scholar 

  340. Dimaki M, Vergani M, Heiskanen A, Kwasny D, Sasso L, Carminati M, Gerrard JA, Emneus J, Svendsen WE (2014) A compact microelectrode array chip with multiple measuring sites for electrochemical applications. Sensors 14:9505–9521

    Article  CAS  Google Scholar 

  341. Graaf MD, Moeller KD (2015) Introduction to microelectrode arrays, the site-selective functionalization of electrode surfaces, and the real-time detection of binding events. Langmuir 31:7697–7706

    Article  CAS  Google Scholar 

  342. Chandrasekhar S (1943) Stochastic problems in physics and astronomy. Rev Mod Phys 15:1–89

    Article  Google Scholar 

  343. Scharifker BR (1988) Diffusion to ensembles of microelectrodes. J Electroanal Chem 240:61–76

    Article  CAS  Google Scholar 

  344. Davies TJ, Ward-Jones S, Banks CE, del Campo J, Mas R, Muñoz FX, Compton RG (2005) The cyclic and linear sweep voltammetry of regular arrays of microdisc electrodes: fitting of experimental data. J Electroanal Chem 585:51–62

    Article  CAS  Google Scholar 

  345. Davies TJ, Compton RG (2005) The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: theory. J Electroanal Chem 585:63–82

    Article  CAS  Google Scholar 

  346. Chevallier FG, Jiang L, Jones TGJ, Compton RG (2006) Mathematical modelling and numerical simulation of cyclic voltammetry at an electrode covered with an insulating film containing cylindrical micropores. J Electroanal Chem 587:254–262

    Article  CAS  Google Scholar 

  347. Belding SR, Dickinson EJF, Compton RG (2009) Diffusional cyclic voltammetry at electrodes modified with random distributions of electrocatalytic nanoparticles: theory. J Phys Chem C 113:11149–11156

    Article  CAS  Google Scholar 

  348. Streeter I, Compton RG (2007) Linear sweep voltammetry at randomly distributed arrays of microband electrodes. J Phys Chem C 111:15053–15058

    Article  CAS  Google Scholar 

  349. Sliusarenko O, Oleinick A, Svir I, Amatore C (2015) Development and validation of an analytical model for predicting chronoamperometric responses of random arrays of micro- and nanodisk electrodes. Chem Electrochem 2:1279–1291

    CAS  Google Scholar 

  350. Gueshi T, Tokuda K, Matsuda H (1978) Voltammetry at partially covered electrodes. Part I. Chronopotentiometry and chronoamperometry at model electrodes. J Electroanal Chem 89:247–260

    CAS  Google Scholar 

  351. Gueshi T, Tokuda K, Matsuda H (1979) Voltammetry at partially covered electrodes. Part II. Linear potential sweep and cyclic voltammetry. J Electroanal Chem 101:29–38

    CAS  Google Scholar 

  352. Tokuda K, Gueshi T, Matsuda H (1979) Voltammetry at partially covered electrodes. Part III. Faradaic impedance measurements at model electrodes. J Electroanal Chem 102:41–48

    CAS  Google Scholar 

  353. Fernández JL, Wijesinghe M, Zoski CG (2015) Theory and experiments for voltammetric and SECM investigations and application to ORR electrocatalysis at nanoelectrode ensembles of ultramicroelectrode dimensions. Anal Chem 87:1066–1074

    Article  CAS  Google Scholar 

  354. Adam C, Kanoufi F, Sojic N, Etienne M (2015) Shearforce positioning of nanoprobe electrode arrays for scanning electrochemical microscopy experiments. Electrochim Acta 179:45–56

    Article  CAS  Google Scholar 

  355. Reller H, Kirowa-Eisner E, Gileadi E (1982) Ensembles of microelectrodes. A digital simulation. J Electroanal Chem 138:65–77

    Article  CAS  Google Scholar 

  356. Shoup D, Szabo A (1984) Chronoamperometry at an ensemble of microdisk electrodes. J Electroanal Chem 160:19–26

    Article  CAS  Google Scholar 

  357. Davies TJ, Banks CE, Compton RG (2005) Voltammetry at spatially heterogeneous electrodes. J Solid State Electrochem 9:797–808

    Article  CAS  Google Scholar 

  358. Ordeig O, Banks CE, Davies TJ, del Campo J, Mas R, Muñoz FX, Compton RG (2006) Regular arrays of microdisk electrodes: simulation quantifies the fraction of ‘dead’ electrodes. Analyst 131:440–445

    Article  CAS  Google Scholar 

  359. Cutress IJ, Compton RG (2009) Stripping voltammetry at microdisk electrode arrays: theory. Electroanalysis 21:2617–2625

    Article  CAS  Google Scholar 

  360. Morf WE, Koudelka-Hep M, de Rooij NF (2006) Theoretical treatment and computer simulation of microelectrode arrays. J Electroanal Chem 590:47–56

    Article  CAS  Google Scholar 

  361. Strutwolf J, Scanlon MD, Arrigan DWM (2009) Electrochemical ion transfer across liquid/liquid interfaces confined within solid-state micropore arrays - simulations and experiments. Analyst 134:148–158

    Article  CAS  Google Scholar 

  362. Strutwolf J, Scanlon MD, Arrigan DW (2010) The performance of differential pulse stripping voltammetry at micro-liquid-liquid interface arrays. J Electroanal Chem 641:7–13

    Article  CAS  Google Scholar 

  363. Strutwolf J, Arrigan WM (2010) Optimisation of the conditions for stripping voltammetric analysis at liquid-liquid interfaces supported at micropore arrays: a computational simulation. Anal Bioanal Chem 398:1625–1631

    Article  CAS  Google Scholar 

  364. Ellis JS, Strutwolf J, Arrigan DWM (2012) Finite-element simulations of the influence of pore wall adsorption on cyclic voltammetry of ion transfer across a liquid-liquid interface formed at a micropore. Phys Chem Chem Phys 14:2494–2500

    Article  CAS  Google Scholar 

  365. Randles JEB (1947) Kinetics of rapid electrode processes. Discuss Faraday Soc 1:11–19

    Article  Google Scholar 

  366. Ševčík A (1948) Oscillographic polarography with periodical triangular voltage. Coll Czech Chem Commun 13:349–377

    Article  Google Scholar 

  367. Liu Y, Strutwolf J, Arrigan DWM (2015) Ion-transfer voltammetric behavior of propranolol at nanoscale liquid-liquid interface arrays. Anal Chem 87:4487–4494

    Article  CAS  Google Scholar 

  368. Niwa O (1995) Electroanalysis with interdigitated array microelectrodes. Electroanalysis 7:606–613

    Article  CAS  Google Scholar 

  369. Chidsey CE, Feldman BJ, Lundgren C, Murray RW (1986) Micrometer-spaced platinum interdigitated array electrode: fabrication, theory, and initial use. Anal Chem 58:601–607

    Article  CAS  Google Scholar 

  370. Nagale MP, Fritsch I (1998) Individually addressable, submicrometer band electrode arrays. 1. Fabrication from multilayered materials. Anal Chem 70:2902–2907

    Article  CAS  Google Scholar 

  371. Nagale MP, Fritsch I (1998) Individually addressable, submicrometer band electrode arrays. 2. Electrochemical characterization. Anal Chem 70:2908–2913

    Article  CAS  Google Scholar 

  372. Vagin MY, Sekretaryova AN, Sanchez Reategui R, Lundstrom I, Winquist F, Eriksson M (2014) Arrays of screen-printed graphite microband electrodes as a versatile electroanalysis platform. Chem Electrochem 1:755–762

    CAS  Google Scholar 

  373. Aoki K, Morita M, Niwa O, Tabei H (1988) Quantitative analysis of reversible diffusion-controlled currents of redox soluble species at interdigitated array electrodes under steady-state conditions. J Electroanal Chem 256:269–282

    Article  CAS  Google Scholar 

  374. Ou TY, Moldoveanu S, Anderson JL (1988) Hydrodynamic voltammetry at an interdigitated electrode array in a flow channel. Part II. Chemical reaction succeeding electron transfer. J Electroanal Chem 247:1–16

    CAS  Google Scholar 

  375. Seddon BJ, Girault HH, Eddowes MJ (1989) Interdigitated microband electrodes: chronoamperometry and steady state currents. J Electroanal Chem 266:227–238

    Article  CAS  Google Scholar 

  376. Liu F, Kolesov G, Parkinson BA (2014) Preparation, applications, and digital simulation of carbon interdigitated array electrodes. Anal Chem 86:7391–7398

    Article  CAS  Google Scholar 

  377. Streeter I, Fietkau N, del Campo J, Mas R, Mũnoz FX, Compton RG (2007) Voltammetry at regular microband electrode arrays: theory and experiment. J Phys Chem C 111:12058–12066

    Article  CAS  Google Scholar 

  378. Odijk M, Olthuis W, Dam VAT, van den Berg A (2008) Simulation of redox-recycling phenomena at interdigitated array (IDA) electrodes: amplification and selectivity. Electroanalysis 20:463–468

    Article  CAS  Google Scholar 

  379. Wollenberger U, Paeschke M, Hintsche R (1994) Interdigitated array microelectrodes for the determination of enzyme activities. Analyst 119:1245–1249

    Article  CAS  Google Scholar 

  380. Kim SK, Hesketh PJ, Li C, Thomas JH, Halsall HB, Heineman WR (2004) Fabrication of comb interdigitated electrodes array (IDA) for a microbead-based electrochemical assay system. Biosens Bioelectron 20:887–894

    Article  CAS  Google Scholar 

  381. Niwa O, Morita M, Tabei H (1990) Electrochemical behavior of reversible redox species at interdigitated array electrodes with different geometries: consideration of redox cycling and collection efficiency. Anal Chem 62:447–452

    Article  CAS  Google Scholar 

  382. Aoki K, Tanaka M (1989) Time-dependence of diffusion-controlled currents at a soluble redox couple at interdigitated microarray electrodes. J Electroanal Chem 266:11–20

    Article  CAS  Google Scholar 

  383. Lewis GEM, Dale SEC, Kasprzyk-Hordern B, Lubben AT, Barnes EO, Compton RG, Marken F (2014) Cavity transport effects in generator-collector electrochemical analysis of nitrobenzene. Phys Chem Chem Phys 16:18966–18973

    Article  CAS  Google Scholar 

  384. Hammond JL, Gross AJ, Estrela P, Iniesta J, Green SJ, Winlove CP, Winyard PG, Benjamin N, Marken F (2014) Cysteine-cystine redox cycling in a gold-gold dual-plate generator-collector microtrench sensor. Anal Chem 86:6748–6752

    Article  CAS  Google Scholar 

  385. Gross AJ, Marken F (2015) ITO-ITO dual-plate microgap electrodes: E and EC’ generator-collector processes. Electroanalysis 27:1035–1042

    Article  CAS  Google Scholar 

  386. Zafarani HR, Mathwig K, Sudhölter EJR, Rassaei L (2016) Electrochemical redox cycling in a new nanogap sensor: design and simulation. J Electroanal Chem 760:42–47

    Article  CAS  Google Scholar 

  387. Liu F, Kolesov G, Parkinson BA (2014) Time of flight electrochemistry: diffusion coefficient measurements using interdigitated array (IDA) electrodes. J Electrochem Soc 161:H3015–H3019

    Article  CAS  Google Scholar 

  388. Barnes EO, Lewis GEM, Dale SEC, Marken F, Compton RG (2012) Generator-collector double electrode systems: a review. Analyst 137:1068–1081

    Article  CAS  Google Scholar 

  389. Zhang W, Stone HA, Sherwood JD (1996) Mass transfer at a microelectrode in channel flow. J Phys Chem 100:9462–9464

    Article  CAS  Google Scholar 

  390. Matysik FM (1997) Voltammetric characterization of a dual-disc microelectrode in stationary solution. Electrochim Acta 42:3113–3116

    Article  CAS  Google Scholar 

  391. Lewis GEM, Dale SEC, Kasprzyk-Hordern B, Barnes EO, Compton RG, Marken F (2012) Square wave electroanalysis at double hemisphere junctions. Electroanalysis 24:1726–1731

    Article  CAS  Google Scholar 

  392. Rajantie H, Williams DE (2001) Electrochemical titrations of thiosulfate, sulfite, dichromate and permanganate using dual microband electrodes. Analyst 126:86–90

    Article  CAS  Google Scholar 

  393. Rajantie H, Williams DE (2001) Potentiometric titrations using dual microband electrodes. Analyst 126:1882–1887

    Article  CAS  Google Scholar 

  394. Ueno K, Kim HB, Kitamura N (2003) Characteristic electrochemical responses of polymer microchannel-microelectrode chips. Anal Chem 75:2086–2091

    Article  CAS  Google Scholar 

  395. Amatore C, Sella C, Thouin L (2006) Electrochemical time-of-flight responses at double-band generator-collector devices under pulsed conditions. J Electroanal Chem 593:194–202

    Article  CAS  Google Scholar 

  396. Kovalcik KD, Kirchhoff JR, Giolando DM, Bozon JP (2004) Copper ring-disk microelectrodes: fabrication, characterization, and application as an amperometric detector for capillary columns. Electrochim Acta 507:237–245

    CAS  Google Scholar 

  397. Liljeroth P, Johans C, Slevin CJ, Quinn BM, Kontturi K (2002) Disk-generation/ring-collection scanning electrochemical microscopy: theory and application. Anal Chem 74:1972–1978

    Article  CAS  Google Scholar 

  398. Harvey SLR, Parker KH, O’Hare D (2007) Theoretical evaluation of the collection efficiency at ring-disc microelectrodes. J Electroanal Chem 610:122–130

    Article  CAS  Google Scholar 

  399. Harvey SLR, Coxon P, Bates D, Parker KH, O’Hare D (2008) Metallic ring-disc microelectrode fabrication using inverted hollow cylindrical sputter coater. Sens Actuators B 129:659–665

    Article  CAS  Google Scholar 

  400. Seddon BJ, Shao Y, Girault HH (1994) Printed microelectrode array and amperometric sensor for environmental monitoring. Electrochim Acta 39:2377–2386

    Article  CAS  Google Scholar 

  401. Seddon BJ, Wang CF, Peng W, Zhang X (1995) Preparation and amperometric response of carbon and platinum dual-cylinder microelectrodes. Electrochim Acta 40:455–465

    Article  CAS  Google Scholar 

  402. Amatore C, Oleinick A, Svir I (2003) Theory of transient and steady-state ECL generation at double-hemicylinder assemblies using conformal mapping and simulations. Electrochem Commun 5:989–994

    Article  CAS  Google Scholar 

  403. Qiu FL, Fisher AC (2003) The boundary element method: chronoamperometric simulations at microelectrodes. Electrochem Commun 5:87–93

    Article  CAS  Google Scholar 

  404. Nagy G, Sugimoto Y, Denuault G (1997) Three-dimensional random walk simulation of diffusion controlled electrode processes: (I) a hemisphere, disc and growing hemisphere. J Electroanal Chem 433:167–173

    Article  CAS  Google Scholar 

  405. Baur JE, Motsegood PN (2004) Diffusional interactions at dual disk microelectrodes: comparison of experiment with three-dimensional random walk simulations. J Electroanal Chem 572:29–40

    Article  CAS  Google Scholar 

  406. Cutress IJ, Dickinson EJF, Compton RG (2011) Electrochemical random walk theory. Probing voltammetry with small numbers of molecules: stochastic versus statistical (Fickian) diffusion. J Electroanal Chem 655:1–8

    Article  CAS  Google Scholar 

  407. Liljeroth P, Johans C, Slevin CJ, Quinn BM, Kontturi K (2002) Micro ring-disk electrode probes for scanning electrochemical microscopy. Electrochem Commun 4:67–71

    Article  CAS  Google Scholar 

  408. Amatore C, Sella C, Thouin L (2002) Diffusional cross-talk between paired microband electrodes operating within a thin film: theory for redox couples with unequal diffusion coefficients. J Phys Chem B 106:11565–11571

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Britz, D., Strutwolf, J. (2016). Two (and Three) Dimensions. In: Digital Simulation in Electrochemistry. Monographs in Electrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-30292-8_12

Download citation

Publish with us

Policies and ethics