Skip to main content

Where Light and Nutrients Collide: The Global Distribution and Activity of Subsurface Chlorophyll Maximum Layers

  • Chapter
  • First Online:
Aquatic Microbial Ecology and Biogeochemistry: A Dual Perspective

Abstract

A satellite view of the world’s oceans presents a mosaic of high chlorophyll (Chla) regions adjacent vast Chla deserts. However, such a view is limited because it reflects conditions of near surface waters only, and misses the vast and sometimes permanent regions of elevated Chla that can exist in subsurface waters. Subsurface chlorophyll maximum layers (SCMLs) are widespread features of the global ocean and are composed of phytoplankton communities that are chromatically and nutritionally adapted to these environments. In this chapter, we first outline the drivers that structure the formation and persistence of SCMLs in marine systems. We develop a simple model that predicts the global distribution and seasonal persistence of SCMLs and find that during any given season, between 59 and 73 % of the ocean may support an SCML. Using a well established global net primary production model, we further predict that approximately 47 % of ocean primary production occurs within SCMLs, a surprisingly large fraction, given the degree of light limitation at these depths. For context, we synthesize key works that have investigated primary production, phytoplankton biomass, and/or nutrient turnover within SCMLs across a range of ocean biomes. These recent studies support previous hypotheses that SCMLs are important sites for new production, and indicate that this new production largely occurs during times when SCMLs are moving deeper into nutriclines or when they are supplied with nutrients through other mechanisms (e.g., tides). In a final section, we draw upon our formative studies in limnology to make linkages between marine and lacustrine systems in terms of the structure and function of SCMLs. Because of large gradients in size, optical properties, and nutritional status across lakes, these systems may present ideal environments to test hypotheses related to the regulation and consequences of SCML productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott MR, Denman KL, Powell TM, Richerson PJ, Richards RC, Goldman CR (1984) Mixing and the dynamics of the deep chlorophyll maximum in Lake Tahoe. Limnol Oceanogr 29:862–878. doi:10.4319/lo.1984.29.4.0862

    Article  CAS  Google Scholar 

  • Arrigo KR, Matrai PA, van Dijken GL (2011) Primary productivity in the Arctic Ocean: impacts of complex optical properties and subsurface chlorophyll maxima on large-scale estimates. J Geophys Res: Oceans 116, C11022. doi:10.1029/2011JC007273

    Article  Google Scholar 

  • Barbeiro RP, Tuchman ML (2001) Results from the U.S. EPA’s biological open water surveillance program of the Laurentian great lakes: II. Deep chlorophyll maxima J. Great Lakes Res 27:155–166. doi:10.1016/S0380-1330(01)70629-6

    Article  Google Scholar 

  • Cullen JJ (2014) Subsurface chlorophyll maximum layers: enduring enigma or mystery solved? Ann Rev Mar Sci 7:19.1–19.33. doi:10.1146/annurev-marine-010213-135111

    Google Scholar 

  • Dugdale RC, Goering JJ (1967) Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol Oceanogr 12:196–206. doi:10.4319/lo.1967.12.2.0196

    Article  CAS  Google Scholar 

  • Estrada M (1996) Primary production in the northwestern Mediterranean. Sci Mar 60(Suppl 2):55–64

    Google Scholar 

  • Fahnenstiel GL, Scavia D (1987) Dynamics of lake Michigan phytoplankton: the deep chlorophyll layer. J Great Lakes Res 13:285–295. doi:10.1016/S0380-1330(87)71652-9

    Article  CAS  Google Scholar 

  • Fairbanks RG, Weibe PH (1980) Foraminifera and chlorophyll maximum: vertical distribution, seasonal succession, and paleoceanographic significance. Science 209:1524–1526. doi:10.1126/science.209.4464.1524

    Article  CAS  PubMed  Google Scholar 

  • Fennel K, Boss E (2003) Subsurface maxima of phytoplankton and chlorophyll: steady-state solutions from a simple model. Limnol Oceanogr 48:1521–1534. doi:10.4319/lo.2003.48.4.1521

    Article  Google Scholar 

  • Francis TB, Schindler DE, Holtgrieve GW, Larson ER, Scheuerell MD, Semmens BX, Ward EJ (2011) Habitat structure determines resource use by zooplankton in temperate lakes. Ecol Lett 14:364–372. doi:10.1111/j.1461-0248.2011.01597.x

    Article  PubMed  Google Scholar 

  • Geider RJ, MacIntyre HL, Kana TM (1998) A dynamic regulatory model of phytoplankton acclimation to light, nutrients and temperature. Limnol Oceanogr 43:679–694. doi:10.4319/lo.1998.43.4.0679

    Article  CAS  Google Scholar 

  • Hickman AE, Holligan PM, Moore CM, Sharples J, Krivtsov V, Palmer MR (2009) Distribution and chromatic adaptation of phytoplankton within a shelf sea thermocline. Limnol Oceanogr 54:525–536. doi:10.4319/lo.2009.54.2.0525

    Article  CAS  Google Scholar 

  • Hickman AE, Moore CM, Sharples J, Lucas MI, Tilstone GH, Krivtsov V, Holligan PM (2012) Primary production and nitrate uptake within the seasonal thermocline of a stratified shelf sea. Mar Ecol Prog Ser 463:39–57. doi:10.3354/meps09836

    Article  CAS  Google Scholar 

  • Hodges BA, Rudnick DL (2004) Simple models of steady deep maxima in chlorophyll and biomass. Deep-Sea Res Part I 51:999–1015. doi:10.1016/j.dsr.2004.02.009

    Article  CAS  Google Scholar 

  • Johnson KS, Riser SC, Karl DM (2010) Nitrate supply from deep to near-surface waters of the North Pacific subtropical gyre. Nature 465:1062–1065. doi:10.1038/nature09170

    Article  CAS  PubMed  Google Scholar 

  • Klausmeier CA, Litchman E (2001) Algal games: the vertical distribution of phytoplankton in poorly mixed water columns. Limnol Oceanogr 46:1998–2007. doi:10.4319/lo.2001.46.8.1998

    Article  Google Scholar 

  • Letelier RM, Karl DM, Abbot MR, Bidagare RR (2004) Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific Subtropical Gyre. Limnol Oceanogr 49:508–519. doi:10.4319/lo.2004.49.2.0508

    Article  CAS  Google Scholar 

  • Malkin SY, Silsbe GM, Smith REH, Howell ET (2012) A deep chlorophyll maximum nourishes benthic filter feeders in the coastal zone of a large clear lake. Limnol Oceanogr 57:735–748. doi:10.4319/lo.2012.57.3.0735

    Article  CAS  Google Scholar 

  • Malmstrom RR, Coe A, Kettler GC, Martiny AC, Frias-Lopez J, Zinser ER, Chisholm SW (2010) Temporal dynamics of Prochlorococcus ecotypes in the Atlantic and Pacific oceans. ISME J 4:1252–1264. doi:10.1038/ismej.2010.60

    Article  PubMed  Google Scholar 

  • Martin J, Tremblay J-É, Gagnon J, Tremblay G, Lapoussière A, Jose C, Poulin M, Gosselin M, Gratton Y, Michel C (2010) Prevalence, structure and properties of subsurface chlorophyll maxima in Canadian Arctic waters. Mar Ecol Prog Ser 412:69–84. doi:10.3354/meps08666

    Article  CAS  Google Scholar 

  • Martin J, Tremblay J-É, Price NM (2012) Nutritive and photosynthetic ecology of subsurface chlorophyll maxima in Canadian Arctic waters. Biogeosciences 9:5353–5371. doi:10.5194/bg-9-5353-2012

    Article  CAS  Google Scholar 

  • Mignot A, Claustre H, Uitz J, Poteau A, D’Ortenzio F, Xing X (2014) Understanding the seasonal dynamics of phytoplankton biomass and the deep chlorophyll maximum in oligotrophic environments: A Bio-Argo float investigation. Global Biogeochem Cycles 28:856–876. doi:10.1002/2013GB004781

    Article  CAS  Google Scholar 

  • Moll RA, Brahce MZ, Peterson TP (1984) Phytoplankton dynamics within the subsurface chlorophyll maximum of Lake Michigan. J Plankton Res 6:751–766. doi:10.1093/plankt/6.5.751

    Article  CAS  Google Scholar 

  • Moore LM, Chisholm SW (1999) Photophysiology of the marine cyanobacterium Prochlorococcus: Ecotypic differences among cultured isolates. Limnol Oceanogr 44:628–638. doi:10.4319/lo.1999.44.3.0628

    Article  Google Scholar 

  • Moore CM, Suggett DJ, Hickman AE, Kim Y-N, Tweddle JF, Sharples J, Geider RJ, Holligan PM (2006) Phytoplankton photoacclimation and photoadaptation in response to environmental gradients in a shelf sea. Limnol Oceanogr 51:936–949. doi:10.4319/lo.2006.51.2.0936

    Article  Google Scholar 

  • Nalepa TF, Fanslow DL, Lang GA (2009) Transformation of the offshore benthic community in Lake Michigan: recent shift from the native amphipod Diporeia spp. to the invasive mussel Dreissena rostriformis bugensis. Freshwater Biol 54:466–479. doi:10.1111/j.1365-2427.2008.02123.x

    Article  Google Scholar 

  • Pannard A, Beisner BE, Bird DF, Braun J, Planas D, Bormans M (2011) Recurrent internal waves in a small lake: Potential ecological consequences for metalimnetic phytoplankton populations. Limnol Oceanogr: Fluids Environ 1:91–109. doi:10.1215/21573698-1303296

    Article  Google Scholar 

  • Richardson K, Visser AW, Pedersen FB (2000) Subsurface phytoplankton blooms fuel pelagic production in the North Sea. J Plankton Res 22:1663–1671. doi:10.1093/plankt/22.9.1663

    Article  Google Scholar 

  • Saba VS, Friedrichs MA, Carr M-E, Antoine D, Armstrong RA et al (2011) Challenges of modeling depth‐integrated marine primary productivity over multiple decades: A case study at BATS and HOT. Glob Biogeochem Cycles 24, GB3020. doi:10.1029/2009GB003655

    Google Scholar 

  • Seki MP, Polovina JJ, Brainard RE, Bidigare RR, Leonard CL, Foley DG (2001) Biological enhancement at cyclonic eddies tracked with GOES thermal imagery in Hawaiian waters. Geophys Res Lett 28:1583–1586. doi:10.1029/2000GL012439

    Article  Google Scholar 

  • Silsbe GM, Smith REH, Hecky RE (2012) Improved estimation of carbon fixation rates from active fluorometry using spectral fluorescence in light-limited environments. Limnol Oceanogr Methods 10:736–751. doi:10.4319/lom.2012.10.736

    Article  CAS  Google Scholar 

  • Tittel J, Bissinger V, Zippel B, Gaedke U, Bell E, Lorke A, Kamjunke N (2003) Mixotrophs combine resource use to outcompete specialists: Implications for aquatic food webs. Proc Natl Acad Sci U S A 100:12776–12781. doi:10.1073/pnas.2130696100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uitz J, Claustre H, Morel A, Hooker SB (2006) Vertical distribution of phytoplankton communities in open ocean: an assessment based on surface chlorophyll. J Geophys Res 111:C08005. doi:10.1029/2005JC003207

    Article  Google Scholar 

  • Venrick EL (1988) The vertical distributions of chlorophyll and phytoplankton species in the North Pacific central environment. J Plankton Res 10:987–998. doi:10.1093/plankt/10.5.987

    Article  Google Scholar 

  • Villareal TA, Pilskaln CH, Montoya JP, Dennet M (2014) Upward nitrate transport by phytoplankton in oceanic waters: balancing nutrient budgets in oligotrophic seas. Peer J 2, e302. doi:10.7717/peerj.302

    Article  PubMed  PubMed Central  Google Scholar 

  • Westberry T, Behrenfeld MJ, Siegel DA, Boss E (2008) Carbon-based primary productivity modelling with vertically resolved photoacclimation. Global Biogeochem Cycles 22:1–18. doi:10.1029/2007GB003078

    Article  Google Scholar 

  • Williams C, Sharples J, Green M, Mahaffey C, Rippeth T (2013) The maintenance of the subsurface chlorophyll maximum in the stratified western Irish Sea. Limnol. Oceanogr: Fluids Environ 3:61–73. doi:10.1215/21573689-2285100

    Google Scholar 

  • Williamson CE, Sanders RW, Moeller RE, Stutzman PL (1996) Utilization of subsurface food resources for zooplankton reproduction: Implications for diel vertical migration theory. Limnol Oceanogr 41:224–233. doi:10.4319/lo.1996.41.2.0224

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank our past and present mentors, particularly Bob Hecky and Stephanie Guildford, for encouraging us through our careers. We also extend our appreciation to Sébastien Gardoll for a brief residency in Paris, to formulate the ideas that became this chapter. Data and the model code of Westberry et al. (2008) were obtained from the NASA-funded Oregon State University Ocean Productivity project (http://www.science.oregonstate.edu/ocean.productivity/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg M. Silsbe .

Editor information

Editors and Affiliations

Greg M. Silsbe and Sairah Y. Malkin

Greg M. Silsbe and Sairah Y. Malkin

We met the day Sairah was interviewing for an M.Sc. position with Bill Taylor at the University of Waterloo. In the hopes of impressing her, I (Greg) informed her I had just returned from a CIDA-funded internship program on the tropical shores of Lake Victoria, East Africa, where I was soon to be returning as an M.Sc. student. And then, I proceeded to show her data tables of CTD profiles. Nevertheless, we would be dating a year later, and we remained at U. Waterloo, to pursue Ph.D.s in limnology with Bob Hecky and Stephanie Guildford, supervisors whose wisdom and humanity has informed much of our careers. Bob had once suggested that if we wanted to better understand lakes, we should take a look at coastal oceans. We took this to heart, and so from U. Waterloo, we went on to pursue postdocs at The Netherlands Institute of Sea Research (NIOZ; with Jacco Kromkamp and Filip Meysman), living variously in The Netherlands, and then across the Schelde in Antwerp, Belgium (where the roads were worse, but the food was better). We were becoming increasingly specialized in the benthos (Sairah) and pelagia (Greg). Logically, our first manuscript together would examine benthic-pelagic coupling (Malkin et al. 2012). After brief stops at the University of Georgia (Sairah; with Mandy Joye), and the University of Oregon (Greg; with Toby Westberry), we are now about to embark on faculty positions with the University of Maryland Center for Environmental Sciences (UMCES), Horn Point Laboratory. We are grateful to institutes that recognize the synergistic benefits of dual spousal hires, and we are looking forward to continuing our research careers together at UMCES.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Silsbe, G.M., Malkin, S.Y. (2016). Where Light and Nutrients Collide: The Global Distribution and Activity of Subsurface Chlorophyll Maximum Layers. In: Glibert, P., Kana, T. (eds) Aquatic Microbial Ecology and Biogeochemistry: A Dual Perspective. Springer, Cham. https://doi.org/10.1007/978-3-319-30259-1_12

Download citation

Publish with us

Policies and ethics