Skip to main content

Structure, Composition, and Function of Biocrust Lichen Communities

  • Chapter
  • First Online:

Part of the book series: Ecological Studies ((ECOLSTUD,volume 226))

Abstract

In this chapter we examine the structure, composition, and function of soil biocrust (i.e., biological soil crust) communities dominated by lichens. Lichens are composite organisms resulting from a symbiotic relationship between a fungus and an alga or cyanobacterium. Biocrust lichens can tolerate a wide range of abiotic stresses such as desiccation, extreme temperature, and high light intensity, making them well adapted to life in arid, semiarid, and polar deserts where resources are limited and competition from vascular plants is low. The ability of some lichens to fix atmospheric nitrogen also gives them a competitive advantage over other organisms in environments that are recovering from disturbance. Biocrust lichens perform many important ecological functions such as providing habitat for microfauna, stabilizing soils, fixing nitrogen and carbon, and enhancing water flow through the soil. However, as with other biocrust taxa, they are highly susceptible to physical disturbances such as trampling by livestock, disturbance by vehicular traffic, and fire. Biocrust lichen ecology is hampered by a lack of information on the distribution of many taxa, difficulties of identifying small organisms, and the high cost of sampling environments where biocrust lichens are likely to form a major component of the surface biota. The adoption of morphological groups for classifying biocrust lichens has helped to simplify the study of biocrust community ecology, but more sophisticated DNA sequencing techniques are needed in order to better understand their ecology, distribution, and how they interact with other soil crust organisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmadjian V, Jacobs JB (1981) Relationship between fungus and alga in the lichen Cladonia cristatella Tuck. Nature 289:169–172

    Article  Google Scholar 

  • Ahmadjian V, Russell LA, Hildreth KC (1980) Artificial reestablishment of lichens. I. Morphological interactions between the phycobionts of different lichens and the mycobionts of Cladonia cristatella and Lecanora chrysoleuca. Mycologia 72:73–89

    Article  Google Scholar 

  • Anderson DC, Harper KT, Rushforth SR (1982) Recovery of cryptogamic crusts from grazing on Utah winter ranges. J Range Manag 35:355–359

    Article  Google Scholar 

  • Barger NN, Castle SC, Dean GN (2013) Denitrification from nitrogen-fixing biologically crusted soils in a cool desert environment, southeast Utah, USA. Ecol Process 2:16

    Article  Google Scholar 

  • Beck A, Kasalicky T, Rambold G (2002) Myco-photobiontal selection in a Mediterranean cryptogam community with Fulgensia fulgida. New Phytol 153:317–326

    Article  Google Scholar 

  • Belnap J, Büdel B, Lange OL (2001) Biological soil crusts: characteristics and distribution. In: Belnap J, Lange O (eds) Biological soil crusts: structure, function, and management, Ecological studies. Springer, Berlin, pp 3–30

    Chapter  Google Scholar 

  • Bjelland T, Ekman S (2005) Fungal diversity in rock beneath a crustose lichen as revealed by molecular markers. Microb Ecol 49:598–603

    Article  PubMed  Google Scholar 

  • Brotherson JD, Rushforth SR, Johansen JR (1983) Effects of long-term grazing on cryptogam crust cover in Navajo National Monument, Arizona. J Range Manag 36:579–581

    Article  Google Scholar 

  • Büdel B, Scheidegger C (2008) Thallus morphology and anatomy. In: Nash TH III (ed) Lichen biology, 2nd edn. Cambridge University Press, Cambridge, pp 40–68

    Chapter  Google Scholar 

  • Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr K, Salisch M, Reisser W, Weber B (2009) Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57(2):229–247

    Article  PubMed  Google Scholar 

  • Büdel B, Colesie C, Green TGA et al (2014) Improved appreciation of the functioning and importance of biological soil crusts in Europe: the Soil Crust International Project (SCIN). Biodivers Conserv 23:1639–1658

    Article  PubMed  PubMed Central  Google Scholar 

  • Chamizo S, Cantón Y, Rodríguez-Caballero E, Domingo F, Escudero A (2012) Runoff at contrasting scales in a semiarid ecosystem: a complex balance between biological soil crust features and rainfall characteristics. J Hydrol 452–453:130–138

    Article  Google Scholar 

  • Chen J, Blume H-P, Beyer L (2000) Weathering of rocks induced by lichen colonization—a review. Catena 39:121–146

    Article  CAS  Google Scholar 

  • Colesie C, Gommeaux M, Green TGA, Büdel B (2013) Biological soil crusts in continental Antarctica: Garwood Valley, southern Victoria Land, and Diamond Hill, Darwin Mountains region. Antarct Sci 26:115–123

    Article  Google Scholar 

  • Colesie C, Green TGA, Haferkamp I, Büdel B (2014) Habitat stress indicates changes in composition, CO2 gas exchange and C-allocation as life traits in biological soil crusts. ISME J 8(10):2104–2115. doi:10.1038/ismej.2014.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deines L, Rosentreter R, Eldrigde DJ, Serpe MD (2007) Germination and seedling characteristics of two annual grasses on lichen-dominated biological soil-crusts. Plant Soil 295:23–35

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Gallardo A (2013) Biological soil crusts increase the resistance of soil nitrogen dynamics to changes in temperatures in a semi-arid ecosystem. Plant Soil 366:35–47

    Article  CAS  Google Scholar 

  • Del-Prado R, Cubas P, Lumbsch HT, Divakar PK, Blanco O, de Paz GA, Molina MC, Crespo A (2010) Genetic distances within and among species in monophyletic lineages of Parmeliaceae (Ascomycota) as a tool for taxon delimitation. Mol Phylogenet Evol 56:125–133

    Article  CAS  PubMed  Google Scholar 

  • Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, Pöschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5:459–462

    Article  CAS  Google Scholar 

  • Eldridge DJ (1998) Dynamics of moss- and lichen-dominated soil crusts in a patterned Callitris glaucophylla woodland in eastern Australia. Acta Oecol 20:159–170

    Article  Google Scholar 

  • Eldridge DJ, Greene RSB (1994) Microbiotic soil crusts: a review of their roles in soil and ecological processes in the rangelands of Australia. Aust J Soil Res 32:389–415

    Article  Google Scholar 

  • Eldridge DJ, Koen TB (1998) Cover and floristics of microphytic soil crusts in relation to indices of landscape health. Plant Ecol 137:101–114

    Article  Google Scholar 

  • Eldridge DJ, Rosentreter R (1999) Morphological groups: a framework for monitoring microphytic crusts in arid landscapes. J Arid Environ 41:11–25

    Article  Google Scholar 

  • Eldridge DJ, Bowker MA, Maestre FT, Alonso P, Mau RL, Papadopoulos J, Escudero A (2010) Interactive effects of three ecosystem engineers on infiltration in a semi-arid Mediterranean grassland. Ecosystems 13:499–510

    Article  Google Scholar 

  • Eversman S (1995) Lichens of alpine meadows on the Beartooth Plateau, Montana and Wyoming, U.S.A. Arct Alp Res 27:400–406

    Article  Google Scholar 

  • Farkas EE, Lökös LS (1994) Distribution of the lichens Cladonia magyarica Vain., and Solorinella asteriscus Anzi in Europe. Acta Bot Fenn 150:21–30

    Google Scholar 

  • Friedl T (1987) Thallus development and phycobionts of the parasitic lichen Diploschistes muscorum. Lichenologist 19:183–191

    Article  Google Scholar 

  • Honegger R (1991) Functional Aspects of the Lichen Symbiosis. Annu Rev Plant Physiol Plant Mol Biol 42:553–578

    Article  CAS  Google Scholar 

  • Hyvärinen M, Härdling R, Tuomi J (2002) Cyanobacterial lichen symbiosis: the fungal partner as an optimal harvester. Oikos 98:498–504

    Article  Google Scholar 

  • Jones TC, Hogg ID, Wilkins RJ, Green TGA (2013) Photobiont selectivity for lichens and evidence for a possible glacial refugium in the Ross Sea Region, Antarctica. Polar Biol 36:767–774

    Article  Google Scholar 

  • Jorgensen PM (2001) Studies in the family Pannariaceae X. The lichen genus Protopannaria in the subantarctic islands. Cryptogam Mycol 22:67–72

    Article  Google Scholar 

  • Kelly LJ, Hollingsworth PM, Coppins BJ, Ellis CJ, Harrold P, Tosh J, Yahr R (2011) DNA barcoding of lichenized fungi demonstrates high identification success in a floristic context. New Phytol 191:288–300

    Article  PubMed  Google Scholar 

  • Klopatek JM (1993) Cryptogamic crusts as potential indicators of disturbance in semi-arid landscapes. In: McKenzie DH, Hyatt DE, McDonald VJ (eds) Ecological indicators. Elsevier, New York, pp 773–786

    Google Scholar 

  • Lalley JS, Viles HA, Henschel JR, Lalley V (2006) Lichen-dominated soil crusts as arthropod habitat in warm deserts. J Arid Environ 67:579–593

    Article  Google Scholar 

  • Lange OL (2003) Photosynthesis of soil crust biota as dependent on environmental factors. In: Belnap J, Lange OL (eds) Biological soil crusts, vol 150, Ecological studies. Springer, Berlin, pp 217–240

    Google Scholar 

  • Lange OL, Belnap J, Reichenberger H (1998) Photosynthesis of the cyanobacterial soil-crust lichen Collema tenax from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Funct Ecol 12:195–202

    Article  Google Scholar 

  • Lange OL, Green TGA, Heber U (2001) Hydration‐dependent photosynthetic production of lichens: what do laboratory studies tell us about field performance? J Exp Bot 52:2033–2042

    Article  CAS  PubMed  Google Scholar 

  • Li XR, Chen YW, Su YG, Tan HJ (2006) Effects of biological soil crust on desert insect diversity: evidence from the Tengger Desert of northern China. Arid Land Res Manag 20:263–280

    Article  Google Scholar 

  • Maestre FT, Escolar C, Martínez I, Escudero A (2008) Are soil lichen communities structured by biotic interactions? A null model analysis. J Veg Sci 19:261–266

    Article  Google Scholar 

  • Maestre FT, Bowker MA, Escolar C, Puche MD, Soliveres S, Maltez-Mouro S, García-Palacios P, Castillo-Monroy AP, Martínez I, Escudero A (2010) Do biotic interactions modulate ecosystem functioning along stress gradients? Insights from semi-arid plant and biological soil crust communities. Philos Trans R Soc B 365:2057–2070

    Article  Google Scholar 

  • Maestre FT, Castillo-Monroy AP, Bowker MA, Ochoa-Hueso R (2012) Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern. J Ecol 100:317–330

    Article  CAS  Google Scholar 

  • McCune B, Rosentreter R, Ponzett JM, Shaw DC (2000) Epiphyte habitats in an old conifer forest in western Washington, USA. Bryologist 103(3): 417–427

    Google Scholar 

  • McCormick PV, Cairns J (1997) Algal indicators of aquatic ecosystem condition and change. In: Wang W, Gorsuch JW, Hughes JS (eds) Plants for environmental studies. CRC Press, Boca Raton, pp 177–207

    Chapter  Google Scholar 

  • Nash III TH, Sigal L (1981) Ecological approaches to the use of lichenized fungi as indicators of air pollution. Mycology series

    Google Scholar 

  • Neitlich PN, McCune B (1997) Hotspots of epiphytic lichen diversity in two young managed forests. Conserv Biol 11(1):172–182

    Article  Google Scholar 

  • Nimis PL, Martellos S (2004) Keys to the lichens of Italy I. Terricolous species. Edizioni Goliardiche, Udine

    Google Scholar 

  • Ott S, Meier T, Jahns HM (1995) Development, regeneration and parasitic interactions between the lichens Fulgensia bracteata and Toninia caeruleonigricans. Can J Bot 73(Suppl 1):595–602

    Article  Google Scholar 

  • Pérez-Ortega S, Ortiz-Álvarez R, Green TGA, de los Rios A (2012) Lichen myco- and photobiont diversity and their relationships at the edge of life (McMurdo Dry Valleys, Antarctica). FEMS Microbiol Ecol 82:429–448

    Article  PubMed  Google Scholar 

  • Pike LH (1978) The importance of epiphytic lichens in mineral cycling. Bryologist 81:247–257

    Article  CAS  Google Scholar 

  • Pinho P, Branquinho C, Máguas C (2010) Modeling ecology of lichen communities based on photobiont type in relation to potential solar radiation and neighborhood land-use. In: Nash TH III, Geiser L, McCune BD et al (eds) Biology of lichens—symbiosis, ecology, environmental monitoring. Systematics and cyber applications, vol 105, Bibliotheca lichenologica. Borntreager Science Publishers, Champaign, pp 149–160

    Google Scholar 

  • Pino-Bodas R, Martín MP, Burgaz AR, Lumbsch HT (2013) Species delimitation in Cladonia (Ascomycota): a challenge to the DNA barcoding philosophy. Mol Ecol Resour 13:1058–1068

    CAS  PubMed  Google Scholar 

  • Poelt J, Baumgärtner H (1964) Uber Rhizinenstrange bei placodialen Flechten. Österreich Bot Zeitschr 111:1–18

    Article  Google Scholar 

  • Poelt J, Grube M (1993a) Beiträge zur Kenntnis der Flechtenflora des Himalaya VI—Die Gattung Tephromela (mit Bemerkungen zum Genus Heppsora). Nova Hedwigia 57:1–17

    Google Scholar 

  • Poelt J, Grube M (1993b) Beiträge zur Kenntnis der Flechtenflora des Himalaya VIII—Lecanora subgen. Placodium. Nova Hedwigia 57:305–352

    Google Scholar 

  • Poelt J, Mayrhofer H (1988) Uber Cyanotrophie bei Flechten. Plant Syst Evol 158:265–281

    Article  Google Scholar 

  • Ponzetti JM, McCune BP (2001) Biotic soil crusts of Oregon's shrub steppe: community composition in relation to soil chemistry, climate, and livestock activity. Bryologist 104(2):212–225

    Google Scholar 

  • Ponzetti J et al. (1998) The effects of fire and herbicides on microbiotic crust dynamics in high desert ecosystems. Nature Conservancy of Oregon

    Google Scholar 

  • Prasse R, Bornkamm R (2008) Vascular plant response to microbiotic surface crusts. In: Breckle SW, Yair A (eds) Arid dune ecosystems. The nizzana sands in the negev desert, vol 200, Ecological studies. Springer, Berlin, pp 337–349

    Chapter  Google Scholar 

  • Reisner MD, Grace JB, Pyke DA, Doescher PS (2013) Conditions favouring Bromus tectorum dominance of endangered sagebrush steppe ecosystems. J Appl Ecol 50:1039–1049

    Article  Google Scholar 

  • Rogers RW, Lange RT (1971) Lichen populations on arid soil crusts around sheep watering places in South Australia. Oikos 22:93–100

    Article  Google Scholar 

  • Romeike J, Friedl T, Helms G, Ott S (2002) Genetic diversity of algal and fungal partners in four species of Umbilicaria (Lichenized Ascomycetes) along a transect of the Antarctic Peninsula. Mol Biol Evol 19:1209–1217

    Article  CAS  PubMed  Google Scholar 

  • Rosentreter, R (1995) Lichen diversity in managed forests of the Pacific Northwest, USA. In: Scheidegger C, Wolseley PA, Thor G (eds) Conservation Biology of Lichenised Fungi. Mitteilungen der Eidgenössischen Forschungsanstalt für Wald, Schnee und Landschaft, Birmensdorf, pp. 103–124

    Google Scholar 

  • Rosentreter R, Eldridge DJ (2002) Monitoring biodiversity and ecosystem function: grasslands, deserts and steppe. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with lichens; monitoring lichens. Kluwer, Dordrecht, pp 223–237

    Chapter  Google Scholar 

  • Rosentreter R, Eldridge DJ (2004) Monitoring rangeland health: using a biological soil crust index. In: Hild AL, Shaw NL, Meyer SE, Booth DT, McArthur DE (comps) Seed and soil dynamics in shrubland ecosystems. Proceedings RMRS-P-31. Rocky Mountains Research Station, Ogden, UT, pp 74–76

    Google Scholar 

  • Rosentreter R, Bowker M, Belnap J (2007) A field guide to biological soil crusts of western U.S. drylands. U.S. Government Printing Office, Denver, 103 pp

    Google Scholar 

  • Root HT, McCune B (2012) Surveying for biotic soil crust lichens of shrub steppe habitats in the Columbia Basin. N Am Fungi 7:1–21

    Google Scholar 

  • Ruprecht U, Brunauer G, Türk R (2014) High photobiont diversity in the common European soil crust lichen Psora decipiens. Biodivers Conserv 23:1771–1785

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaper GM (2003) Komplexe Interaktionsmuster und die Dynamik von Entwicklungs-prozessen in Flechtenökosystemen. Unpublished DPhil thesis, Heinrich-Heine-Universität, Düsseldorf

    Google Scholar 

  • Schneider G (1979) Die Flechtengattung Psora sensu Zahlbruckner. Bibliotheca Lichenologica 13. J. Cramer, Vaduz, 291 pp

    Google Scholar 

  • Seaward MRD (1988) Contribution of lichens to ecosystems. In: Galun M (ed) Handbook of lichenology. CRC Press, Boca Raton, pp 107–129

    Google Scholar 

  • Serpe MD, Orm JM, Barkes TR, Rosentreter R (2006) Germination and seed water status of four grasses on moss dominated biological soil crusts from arid lands. Plant Ecol 185:163–178

    Article  Google Scholar 

  • Serpe MD, Zimmerman SJ, Deines L, Rosentreter R (2008) Seed water status and root tip characteristics of two annual grasses on lichen-dominated biological soil crusts. Plant Soil 303:191–205

    Article  CAS  Google Scholar 

  • Skuterud L, Gaare E, Eikelmann IM, Hove K, Steinnes E (2005) Chernobyl radioactivity persists in reindeer. J Environ Radioact 83:231–252

    Article  CAS  PubMed  Google Scholar 

  • Timdal E (1986) A revision of Psora (Lecideaceae) in North America. Bryologist 89:253–275

    Article  Google Scholar 

  • Timdal E (1987) Problems of generic delimitation among squamiform members of the Lecideaceae. In: Peveling E (ed) Progress and problems in lichenology in the eighties, vol 25, Bibliotheca lichenologica. J. Cramer, Berlin, pp 243–247

    Google Scholar 

  • Tongway DJ, Smith EL (1989) Soil surface features as indicators of rangeland site productivity. Aust Rangel J 11:15–20

    Article  Google Scholar 

  • Trinkaus U, Mayrhofer H, Elix JA (2001) Revision of the Buellia epigaea-group (lichenized ascomycetes, Physciaceae) 2. The species in Australia. Lichenologist 33(01):47–62

    Article  Google Scholar 

  • West NE (1990) Structure and function of microphytic soil crusts in wildland ecosystems of arid and semi-arid regions. Adv Ecol Res 20:179–223

    Article  Google Scholar 

  • Wetmore CM. (1985) Lichens and air quality in Isle Royale National Park. Final Report submitted to National Park Service, Denver, Colo. 41pp

    Google Scholar 

  • Wirtz N, Lumbsch HT, Green TGA, Türk R, Pintado A, Sancho L, Schroeter B (2003) Lichen fungi have low cyanobiont selectivity in maritime Antarctica. New Phytol 160:177–183

    Article  Google Scholar 

  • Will-Wolf S (1998) Lichens of Badlands National Park, South Dakota, USA. Lichenographia Thomsoniana: North American Lichenology in Honor of John W. Thomson. Mycotaxon, Ithaca, NY, pp 323–336

    Google Scholar 

  • Wu L, Zhang G, Lan S, Zhang D, Hu C (2013) Microstructures and photosynthetic diurnal changes in the different types of lichen soil crusts. Eur J Soil Biol 59:48–53

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the European Commission for funding the BioDiversa project SCIN as well as the local funding agencies for administration of the ERA network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Rosentreter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rosentreter, R., Eldridge, D.J., Westberg, M., Williams, L., Grube, M. (2016). Structure, Composition, and Function of Biocrust Lichen Communities. In: Weber, B., Büdel, B., Belnap, J. (eds) Biological Soil Crusts: An Organizing Principle in Drylands. Ecological Studies, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-319-30214-0_7

Download citation

Publish with us

Policies and ethics