Skip to main content

Langmuir Solitons in Plasma with Inhomogeneous Electron Temperature and Space Stimulated Scattering on Damping Ion-Sound Waves

  • Conference paper
  • First Online:
  • 725 Accesses

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 156))

Abstract

Dynamics of Langmuir solitons is considered in the framework of the extended nonlinear Schrödinger equation (NLSE), including a pseudo-stimulated-Raman-scattering (pseudo-SRS) term, caused by stimulated scattering on damping ion-sound waves. Also included are spatially decreasing second-order dispersion (SOD) and increasing self-phase modulation (SPM), caused by spatially decreasing electron temperature of plasma. It is shown that the wavenumber downshift of solitons, caused by the pseudo-SRS, may be compensated by an upshift provided by the decreasing SOD and increasing SPM coefficients. An analytical solution for solitons is obtained in an approximate form. Analytical and numerical results agree well.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Infeld, E., Rowlands, G.: Nonlinear Waves, Solitons, and Chaos. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  2. Agrawal, G.P.: Nonlinear Fiber Optic. Academic Press, San Diego (2001)

    Google Scholar 

  3. Yang, Y.: Solitons in Field Theory and Nonlinear Analysis. Springer, New York (2001)

    Book  MATH  Google Scholar 

  4. Kivshar, Y.S., Agraval, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic, San Diego (2003)

    Google Scholar 

  5. Dickey, L.A.: Soliton Equation and Hamiltonian Systems. World Scientific, New York (2005)

    Google Scholar 

  6. Malomed, B.A.: Soliton Management in Periodic Systems. Springer, New York (2006)

    MATH  Google Scholar 

  7. Dauxois, T., Peyrard, M.: Physics of Solitons. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  8. Sich, M., Krizhanovskii, D.N., Skolnick, M.S., Gorbach, A.V., Hartley, R., Skryabin, D.V., Cerda-Méndez, E.A., Biermann, K., Hey, R., Santos, P.V.: Nat. Photonics 6, 50–55 (2012)

    Article  Google Scholar 

  9. Kauranen, M., Zayats, A.V.: Nat. Photonics 6, 737–748 (2012)

    Article  Google Scholar 

  10. Cerda-Ménde, E.A., Sarkar, D., Krizhanovskii, D.N., Gavrilov, S.S., Biermann, K., Skolnick, M.S., Santos, P.V.: Phys. Rev. Lett. 111, 146401 (2013)

    Article  Google Scholar 

  11. Zakharov, V.E., Shabat, A.B.: Sov. Phys. - JETP 34, 62–69 (1972)

    MathSciNet  Google Scholar 

  12. Hasegawa, A., Tappert, F.: Appl. Phys. Lett. 23, 142–144 (1973)

    Article  Google Scholar 

  13. Mitschke, F.M., Mollenauer, L.F.: Opt. Lett. 11, 659–661 (1986)

    Article  Google Scholar 

  14. Gordon, J.P.: Opt. Lett. 11, 662–664 (1986)

    Article  Google Scholar 

  15. Kodama, Y.: J. Stat. Phys. 39, 597–614 (1985)

    Article  MathSciNet  Google Scholar 

  16. Kodama, Y., Hasegawa, A.: IEEE J. Quantum Electron. 23, 510–524 (1987)

    Article  Google Scholar 

  17. Zaspel, C.E.: Phys. Rev. Lett. 82, 723–726 (1999)

    Article  Google Scholar 

  18. Hong, B., Lu, D.: Int. J. Nonlinear Sci. 7, 360–367 (2009)

    MathSciNet  Google Scholar 

  19. Karpman, V.I.: Eur. Phys. J. B 39, 341–350 (2004)

    Article  Google Scholar 

  20. Gromov, E.M., Talanov, V.I.: J. Exp. Theor. Phys. 83 73–79 (1996)

    Google Scholar 

  21. Gromov, E.M., Talanov, V.I.: Chaos 10, 551–558 (2000)

    Article  Google Scholar 

  22. Gromov, E.M., Piskunova, L.V., Tyutin, V.V.: Phys. Lett. A 256, 153–158 (1999)

    Article  Google Scholar 

  23. Obregon, M.A., Stepanyants, Yu.A.: Phys. Lett. A 249, 315–323 (1998)

    Article  Google Scholar 

  24. Scalora, M., Syrchin, M., Akozbek, N., Poliakov, E.Y., D’Aguanno, G., Mattiucci, N., Bloemer, M.J., Zheltikov, A.M.: Phys. Rev. Lett. 95, 013902 (2005)

    Article  Google Scholar 

  25. Wen, S.C., Wang, Y., Su, W., Xiang, Y., Fu, X., Fan, D.: Phys. Rev. E 73, 036617 (2006)

    Article  Google Scholar 

  26. Marklund, M., Shukla, P.K., Stenflo, L.: Phys. Rev. E 73, 037601 (2006)

    Article  Google Scholar 

  27. Tsitsas, N.L., Rompotis, N., Kourakis, I., Kevrekidis, P.G., Frantzeskakis, D.J.: Phys. Rev. E 79, 037601 (2009)

    Article  Google Scholar 

  28. Kivshar, Y.S.: Phys. Rev. A 42, 1757–1761 (1990)

    Article  Google Scholar 

  29. Kivshar, Y.S., Malomed, B.A.: Opt. Lett. 18, 485–487 (1993)

    Article  Google Scholar 

  30. Malomed, B.A., Tasgal, R.S.: J. Opt. Soc. Am. B 15, 162–170 (1998)

    Article  Google Scholar 

  31. Biancalama, F., Skrybin, D.V., Yulin, A.V.: Phys. Rev. E 70, 011615 (2004)

    Google Scholar 

  32. Essiambre, R.-J., Agraval, G.P.: J. Opt. Soc. Am. B 14, 314–322 (1997)

    Article  Google Scholar 

  33. Essiambre, R.-J., Agrawal, G.P.: J. Opt. Soc. Am. B 14, 323–330 (1997)

    Article  Google Scholar 

  34. Andrianov, A., Muraviev, S., Kim, A., Sysoliatin, A.: Laser Phys. 17, 1296–1302 (2007)

    Article  Google Scholar 

  35. Chernikov, S., Dianov, E., Richardson, D., Payne, D.: Opt. Lett. 18, 476–478 (1993)

    Article  Google Scholar 

  36. Gromov, E.M., Malomed, B.A.: J. Plasma Phys. 79, 1057–1062 (2013)

    Article  Google Scholar 

  37. Gromov, E.M., Malomed, B.A.: Opt. Commun. 320, 88–93 (2014)

    Article  Google Scholar 

  38. Aseeva, N.V., Gromov, E.M., Tyutin, V.V.: Radiophys. Quantum Electron. 56, 157–166 (2013)

    Article  Google Scholar 

  39. Zakharov, V.E.: Collapse of Langmuir waves. Sov. Phys. JETP 35, 908–914 (1972)

    Google Scholar 

  40. Oliviera, J.R., Moura, M.A.: Phys. Rev. E 57, 4751–4755 (1998)

    Article  MathSciNet  Google Scholar 

  41. Blit, R., Malomed, B.A.: Phys. Rev. A 86, 043841 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research projects No 15-02-01919. The article was prepared within the framework of the Academic Fund Program at the National Research University Higher School of Economics (HSE) in 2015 (grant No 15-09-0240).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Aseeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Aseeva, N.V., Gromov, E.M., Nasedkina, T.V., Onosova, I.V., Tyutin, V.V. (2016). Langmuir Solitons in Plasma with Inhomogeneous Electron Temperature and Space Stimulated Scattering on Damping Ion-Sound Waves. In: Kalyagin, V., Koldanov, P., Pardalos, P. (eds) Models, Algorithms and Technologies for Network Analysis. NET 2014. Springer Proceedings in Mathematics & Statistics, vol 156. Springer, Cham. https://doi.org/10.1007/978-3-319-29608-1_19

Download citation

Publish with us

Policies and ethics