Skip to main content

Approaches to Global Development

  • Chapter
  • First Online:
Energy Flows, Material Cycles and Global Development

Part of the book series: Environmental Science and Engineering ((ENVENG))

  • 826 Accesses

Abstract

As a consequence of the material and energy flow analyses discussed in the preceding chapters, this chapter presents general criteria for future development and related technology options. As the most important criterion, human activities in energy conversion should make optimum use of natural cycles, instead of depending on non-renewable fossil raw materials. However, this is possible only if technologies are developed that can cope with the low average flux densities of natural energy and material flows. Examples are discussed for the electricity and heat generation sectors, mobility and transport, with a short discussion of bioenergy and hydrogen. As a means for better understanding the contribution of individual life styles, per-capita energy demand values and \(\text {CO}_{2}\) emission patterns are presented, which are easy to use in personal case studies. Global strategies for development in terms of protecting the global biosphere are introduced, based on scenarios that can be found in the open literature, regarding future developments of emissions and responses of the global climate system. The transition process to a non-fossil energy supply system as recently initiated in Germany is also outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angel R (2006) Feasibility of cooling the earth with a cloud of small spacecraft near the inner Lagrange point (L1). Proc Natl Acad Sci USA 103:17184–17189

    Google Scholar 

  • Anon (2007) Ungleiche Welt. Greenpeace Magazin. politik.wirtschaft.umwelt 2.07:47

    Google Scholar 

  • Antizar-Ladislao B, Turrion-Gomez JL (2008) Second-generation biofuels and local bioenergy systems. Biofuels Bioprod Bioref 2:455–469

    Google Scholar 

  • Bakker M, Zondag HA, Elswijk MJ, Strootman KJ, Jong MJM (2005) Perfomance and costs of a roof-sized PV/thermal array combined with a ground coupled heat pump. Sol Energy 78:331–339

    Google Scholar 

  • Breeze P (2008) Coping with carbon: a near-term strategy to limit carbon dioxide emissions from power stations. Phil Trans R Soc A 366:3891–3900

    Google Scholar 

  • Clariant (2015) 2nd generation biofuels from Clariant and Haltermann, http://www.bioconsortium.eu/news. Cited 18 Feb 2015

  • Crutzen PJ (2006) Albedo enhancement by stratospheric sulphur injections: A contribution to resolve a policy dilemma? Clim Change 77:211–219

    Google Scholar 

  • Desertec (2014) http://www.desertec.org. Cited 15 Oct 2014

  • Droste-Franke B, Paal BP, Rehtanz C, Sauer DU, Schneider JP, Schreurs M, Ziesemer T (2012) Balancing Renewable Electricity – Energy Storage, Demand Size Management, and Network Extension. Springer, Berlin

    Google Scholar 

  • Energieberatung (2015) http://www.energieberatung-rlp.de, http://www.dena.de, http://www.bafa.de. Cited 12 Feb 2015

  • Energiebilanzen (2014) http://www.ag-energiebilanzen.de. Cited 12 Feb 2015

  • FNR Fachagentur Nachwachsende Rohstoffe (2009) Biokraftstoffe – Eine vergleichende Analyse. http://www.fnr.de. Cited 11 Mar 2010

  • Graßl H, Kokott J, Kulessa M, Luther J, Nuscheler F, Sauerborn R, Schellnhuber HJ, Schubert R, Schulze ED (2003) Über Kyoto hinaus denken – Klimaschutzstrategien für das 21. Jahrhundert. Special Report, Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen WBGU, http://www.wbgu.de. Cited Oct 2009

  • Hamelinck CN, Faaij APC (2006) Outlook for advanced biofuels. Energy Policy 34:3268–3283

    Google Scholar 

  • Hamwey RM (2007) Active amplification of the terrestrial albedo to mitigate climate change: An exploratory study. Mitig Adapt Strateg Glob Change 12:419–439

    Google Scholar 

  • Henrich EN, Dahmen N, Dinjus E (2009) Cost estimate for biofuel production via biosyncrude gasification. Biofuels Bioprod Bioref 3:28–41

    Google Scholar 

  • IPCC Intergovernmental Panel on Climate Change (2000) Emission Scenarios (Special Report). Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC Intergovernmental Panel on Climate Change (2007a) Climate Change 2007 – Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the IPCC. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC Intergovernmental Panel on Climate Change (2007b) Climate Change 2007 – Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the IPCC. Chapter 4 – Energy Supply. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC Intergovernmental Panel on Climate Change (2007c) Climate Change 2007 – Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the IPCC. Chapter 5 – Transport and its Infrastructure. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC Intergovernmental Panel on Climate Change (2007d) Climate Change 2007 – The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC. Chapter 10 – Global Climate Projections. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC Intergovernmental Panel on Climate Change (2007e) Climate Change 2007 – Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the IPCC. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC Intergovernmental Panel on Climate Change (2011) Special Report on Renewable Energy Sources and Climate Change Mitigation, Working Group III. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC Intergovernmental Panel on Climate Change (2013) Climate Change 2013 – The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC, Chapters 11 to 14. http://www.ipcc.ch/report/ar5. Cited 16 Mar 2015

  • IPCC Intergovernmental Panel on Climate Change (2014) Climate Change 2014 – Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the IPCC, Cited 16 Mar 2015

    Google Scholar 

  • Kacelle (2015) Bringing cellulosic ethanol to industrial production at Kalundborg, Denmark. http://www.inbicon.com. Cited 18 Feb 2015

  • Kreysa G (2009) Sustainable Management of the Global Carbon Cycle Through Geostorage of Wood. ChemSusChem 2:633–644

    Google Scholar 

  • Latham J, Rasch P, Chen CC, Kettles L, Gadian A, Gettelman A, Morrison H, Bower K, Choulartonc T (2008) Global temperature stabilization via controlled albedo enhancement of low-level maritime clouds. Phil Trans R Soc A 366:3969–3987

    Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems – a review. Mitig Adapt Strateg Glob Change 11:403–427

    Google Scholar 

  • Lenton TM, Vaughan NE (2009) The radiative forcing potential of different climate geoengineering options. Atmos Chem Phys Discuss 9:2559–2608

    Google Scholar 

  • Lovelock JE, Rapley CG (2007) Ocean pipes could help the earth to cure itself. Nature 449:403

    Google Scholar 

  • Maplecroft (2010) Climate Change Risk Report 2009/2010 and Climate Change Risk Atlas 2010. http://www.global-risks.com and http://www.maplecroft.com. Cited 28 Mar 2010

  • Mitchell DL, Rasch PJ (2009) Modification of cirrus clouds to reduce global warming. Environ Res Lett 4:045102

    Google Scholar 

  • Nakicenovic N, Riahi K (2003) External Expertise for Graßl et al. (2003), unpublished manuscript

    Google Scholar 

  • Passiv (2015) http://www.passiv.de. Cited 13 Feb 2015

  • Philibert C (2006) Barriers to the diffusion of solar thermal technologies. OECD and IEA Information Paper, International Energy Agency, Paris

    Google Scholar 

  • Photovoltaik (2016) http://www.photovoltaik.org/wissen/photovoltaik-wirkungsgrad. Cited 24 Jan 2016

  • Ratledge C, Cohen Z (2008) Microbial and algal oils: do they have a future for biodiesel or commodity oils? Lipid Technology 20:155–160

    Google Scholar 

  • Read P (2008) Biosphere carbon stock management: addressing the threat of abrupt climate change in the next few decades: an editorial essay. Climatic Change 87:305–320

    Google Scholar 

  • Repotec (2010) http://www.repotec.at. Cited 15 Feb 2010

  • Schaub G, Vetter A (2008) Biofuels for Automobiles: An Overview. Chem Eng Technol 31:721–729

    Google Scholar 

  • Schaub G, Pabst K (2011) Synthetic Hydrocarbon Fuels from Lignocellulosic Biomass, Chapter 9. In: Muradov N, Veziroglu N (eds) Carbon-Neutral Fuels and Energy Carriers, 1st edn. Taylor & Francis, CRC Press, Bosa Roca

    Google Scholar 

  • Schaub G, Eilers H, Iglesias Gonzalez M (2013) Chemical Storage of Renewable Electricity via Hydrogen – Principles and Hydrocarbon Fuels as Example, Chapter 30. In: Stolten D, Scherer V (eds) Transition to Renewable Energy Systems. Wiley-VCH Verlag, Weinheim, pp 619–628

    Google Scholar 

  • Schaub G, Eilers H, Iglesias Gonzalez M (2014) Integration of hydrogen from wind and solar power in hydrocarbon synfuels from biomass. Proc Int Conf Bioenergy from Forest. Helsinki, September 2014. p 192–196

    Google Scholar 

  • Schneidewind U, Augenstein K, Scheck H (2013) The Transition to Renewable Energy Systems – On the Way to a Comprehensive Transition Concept, Chapter 8. In: Stolten D, Scherer V (eds) Transition to Renewable Energy Systems. Wiley-VCH Verlag, Weinheim, pp 119–136

    Google Scholar 

  • Smetacek V, Naqvi SWA (2008) The next generation of iron fertilization experiments in the southern ocean. Phil Trans R Soc A 366:3947–3967

    Google Scholar 

  • Smolinka T (2009) Water Electrolysis. In: Garche J (ed) Encyclopedia of Electrochemical Power Sources., Chapter Fuels – Hydrogen, Elsevier, Amsterdam, pp 394–413

    Google Scholar 

  • Stadtwerke Flensburg (2010) http://www.stadtwerke-flensburg.de. Cited 03 Feb 2010

  • Steiger W (2009) VDI-Nachrichten, Düsseldorf, 29 Feb 2009

    Google Scholar 

  • UBA (2014) Studie Treibhausgasneutrales Deutschland im Jahr 2050, Umweltbundesamt, http://www.uba.de. Cited 12 Apr 2015

  • Verne J (1889) Sans dessus dessous. Hetzel, Paris

    Google Scholar 

  • WBGU (2011) Hauptgutachten Welt im Wandel, Gesellschaftsvertrag für eine Große Transformation, Berlin, http://www.wbgu.de. Cited 12 Apr 2015

  • Wingenter OW, Elliot SM, Blake DR (2007) New directions: enhancing the natural sulphur cycle to slow global warming. Atmos Environ 41:7373–7375

    Google Scholar 

  • World Bank (2015) http://www.data.worldbank.org. Cited 10 Mar 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Schaub .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schaub, G., Turek, T. (2016). Approaches to Global Development. In: Energy Flows, Material Cycles and Global Development. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-29495-7_7

Download citation

Publish with us

Policies and ethics