Skip to main content

A Habit Detection Algorithm (HDA) for Discovering Recurrent Patterns in Smart Meter Time Series

  • Conference paper
  • First Online:
Book cover Big Data Analytics in the Social and Ubiquitous Context (SENSEML 2015, MUSE 2014, MSM 2014)

Abstract

Conserving water is a critical problem and characterising how households in communities use water is a first step for reducing consumption. This paper introduces a method for discovering habits in smart water meter time series. Habits are household activities that recur in a predictable way, such as watering the garden at 6 am twice a week. Discovering habit patterns automatically is a challenging data mining task. Habit patterns are not only periodic, nor only seasonal, and they may not be frequent. Their recurrences are partial periodic patterns with a very large number of candidates. Further, the recurrences in real data are imperfect, making accurate matching of observations with proposed patterns difficult. The main contribution of this paper is an efficient, robust and accurate Habit Detection Algorithm (HDA) for discovering regular activities in smart meter time series with evaluation the performance of the algorithm and its ability to discover valuable insights from real-world data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://reports.weforum.org/global-risks-2015/.

  2. 2.

    http://www.r-project.org/.

References

  1. Beal, C., Stewart, R.: Identifying residential water end uses underpinning peak day and peak hour demand. J. Water Resour. Plann. Manag. 140(7), 04014008 (2014). http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000357

    Article  Google Scholar 

  2. Beal, C.D., Stewart, R.A., Fielding, K.: A novel mixed method smart metering approach to reconciling differences between perceived and actual residential end use water consumption. J. Cleaner Prod. 60, 116–128 (2011). http://www.sciencedirect.com/science/article/pii/S0959652611003386

    Article  Google Scholar 

  3. Cardell-Oliver, R.: Water use signature patterns for analyzing household consumption using medium resolution meter data. Water Resour. Res. 1–11 (2013). http://onlinelibrary.wiley.com//10.1002/2013WR014458/abstract

  4. Cardell-Oliver, R.: A habit discovery algorithm for mining temporal recurrence patterns in metered consumption data. In: 1st International Workshop on Machine Learning for Urban Sensor Data (SenseML), 15 September 2014. https://www.tk.informatik.tu-darmstadt.de/en/senseml-2014/

  5. Chen, F., Dai, J., Wang, B., Sahu, S., Naphade, M., Lu, C.T.: Activity analysis based on low sample rate smart meters. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2011, pp. 240–248. ACM, New York (2011)

    Google Scholar 

  6. Cole, G., O’Halloran, K., Stewart, R.A.: Time of use tariffs: implications for water efficiency. Water Sci. Technol.: Water Supply 12(1), 90–100 (2012)

    Google Scholar 

  7. Cole, G., Stewart, R.A.: Smart meter enabled disaggregation of urban peak water demand: precursor to effective urban water planning. Urban Water J. 10(3), 174–194 (2013)

    Article  Google Scholar 

  8. Erickson, T., Podlaseck, M., Sahu, S., Dai, J.D., Chao, T., Naphade, M.: The dubuque water portal: evaluation of the uptake, use and impact of residential water consumption feedback. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2012, pp. 675–684. ACM, New York (2012). http://www.acm.org/10.1145/2207676.2207772

  9. Froehlich, J., Larson, E., Saba, E., Fogarty, J., Campbell, T., Atlas, L., Patel, S.: A longitudinal study of pressure sensing to infer real-world water usage events in the home. In: Lyons, K., Hightower, J., Huang, E.M. (eds.) Pervasive 2011. LNCS, vol. 6696, pp. 50–69. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and future directions. Data Min. Knowl. Discov. 15(1), 55–86 (2007)

    Article  MathSciNet  Google Scholar 

  11. Han, J., Dong, G., Yin, Y.: Efficient mining of partial periodic patterns in time series database. In: Proceedings of the 15th International Conference on Data Engineering, pp. 106–115. IEEE (1999)

    Google Scholar 

  12. Kim, Y., Schmid, T., Srivastava, M.B., Wang, Y.: Challenges in resource monitoring for residential spaces. In: Proceedings of the First ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, pp. 1–6. ACM (2009)

    Google Scholar 

  13. Li, Y., Ning, P., Wang, X.S., Jajodia, S.: Discovering calendar-based temporal association rules. Data Knowl. Eng. 44(2), 193–218 (2003)

    Article  Google Scholar 

  14. Li, Y., Zhu, S., Wang, X.S., Jajodia, S.: Looking into the seeds of time: discovering temporal patterns in large transaction sets. Inf. Sci. 176(8), 1003–1031 (2006). http://www.sciencedirect.com/science/article/pii/S0020025505000563

    Article  MATH  MathSciNet  Google Scholar 

  15. Li, Y., Lin, J.: Approximate variable-length time series motif discovery using grammar inference. In: Proceedings of the Tenth International Workshop on Multimedia Data Mining, MDMKDD 2010, pp. 10:1–10:9. ACM, New York (2010)

    Google Scholar 

  16. Mahanta, A.K., Mazarbhuiya, F.A., Baruah, H.K.: Finding calendar-based periodic patterns. Pattern Recogn. Lett. 29(9), 1274–1284 (2008). http://www.sciencedirect.com/science/article/pii/S0167865508000512

    Article  Google Scholar 

  17. Nevill-Manning, C.G., Witten, I.H.: Compression and explanation using hierarchical grammars. Computer J. 40(2 and 3), 103–116 (1997). http://comjnl.oxfordjournals.org/content/40/2_and_3/103.abstract

    Article  Google Scholar 

  18. Nguyen, K., Zhang, H., Stewart, R.A.: Development of an intelligent model to categorise residential water end use events. J. Hydro-environment Res. 7(3), 182–201 (2013). http://www.sciencedirect.com/science/article/pii/S1570644313000221

    Article  Google Scholar 

  19. Russell, S., Fielding, K.: Water demand management research: a psychological perspective. Water Resour. Res. 46(5) (2010). http://www.dx.org/10.1029/2009WR008408

  20. Srinivasan, V., Stankovic, J., Whitehouse, K.: Fixturefinder: discovering the existence of electrical and water fixtures. In: Proceedings of the 12th International Conference on Information Processing in Sensor Networks, IPSN 2013, pp. 115–128. ACM, New York (2013). http://www.acm.org/10.1145/2461381.2461398

  21. Wang, J., Cardell-Oliver, R., Liu, W.: Efficient discovery of recurrent routine behaviours in smart meter time series by growing subsequences. In: Cao, T., Lim, E.-P., Zhou, Z.-H., Ho, T.-B., Cheung, D., Motoda, H. (eds.) PAKDD 2015. LNCS, vol. 9078, pp. 522–533. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  22. Yang, J., Wang, W., et al.: Discovering high-order periodic patterns. Knowl. Inf. Syst. 6(3), 243–268 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This research is funded by the Cooperative Research Centre for Water Sensitive Cities under project C5.1. The author would like to thank H. Gigney, S. Atkinson, G. Peach and R. Pickering at the Water Corporation of Western Australia for the smart meter datasets and for their advice on interpreting them. Thanks also to Eneldo Loza Mencia, Jin Wang and the anonymous reviewers for comments that greatly improved the manuscript. This research has been approved by the Human Research Ethics Office (HREO) of the University of Western Australia (RA/4/1/6253).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Cardell-Oliver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Cardell-Oliver, R. (2016). A Habit Detection Algorithm (HDA) for Discovering Recurrent Patterns in Smart Meter Time Series. In: Atzmueller, M., Chin, A., Janssen, F., Schweizer, I., Trattner, C. (eds) Big Data Analytics in the Social and Ubiquitous Context. SENSEML MUSE MSM 2015 2014 2014. Lecture Notes in Computer Science(), vol 9546. Springer, Cham. https://doi.org/10.1007/978-3-319-29009-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29009-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29008-9

  • Online ISBN: 978-3-319-29009-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics