Skip to main content

An Ecological Dynamics Framework for the Acquisition of Perceptual–Motor Skills in Climbing

  • Chapter
  • First Online:

Abstract

Uncertainty in extreme sports performance environments, like rock and ice climbing, provides considerable psycho-emotional and physiological demands which challenge the acquisition of perceptual–motor skills. An ecological dynamics theoretical framework adopts concepts and tools of nonlinear dynamics and ecological psychology to investigate and model the relationships that emerge in extreme sports between athletes and their performance environments. In this relation, the interactions of athletes with key objects, surfaces, events and significant others during a sport like climbing emerge from interdependent personal, task and environmental constraints on performance. Performance behaviours emerge through the continuous and active exploration of environmental properties by individual athletes. Properties of rock cliffs, icefalls and mountains provide a high level of uncertainty due to continuous weather-driven changes. Their unpredictability signifies that performance may be considered as an ongoing coadaptation of climber’s behaviours to dynamically changing, interacting constraints, individually perceived and encountered. In this chapter, we consider the continuous interactions between climbers and their environment to understand how they can be coached to perceive key environmental properties when climbing and adapt their behaviours towards achieving performance goals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Phillips K, Sassaman J, Smoliga J. Optimizing rock climbing performance through sport specific strength and conditioning. Strength Cond J. 2012;34(3):1–18.

    Article  Google Scholar 

  2. Moulin C. Solos. Chamonix: Guérin edition; 2005.

    Google Scholar 

  3. Child G. Mixed emotions: mountaineering writings. Seattle: Mountaineers Books; 1993.

    Google Scholar 

  4. Davids K, Araujo D, Hristovski R, Passos P, Chow JY. Ecological dynamics and motor learning design in sport. In: Hodges NJ, Williams AM, editors. Skill acquisition in sport: research, theory and practice. 2nd ed. New York: Routledge (Taylor and Francis Group); 2012. p. 112–30.

    Google Scholar 

  5. Davids K, Button C, Bennett SJ. Dynamics of skill acquisition: a constraints-led approach. Champaign: Human Kinetics; 2008.

    Google Scholar 

  6. Davids K, Handford C, Williams AM. The natural physical alternative to cognitive theories of motor behavior: an invitation for interdisciplinary research in sports science? J Sports Sci. 1994;12:495–528.

    Article  CAS  PubMed  Google Scholar 

  7. Seifert L, Orth D, Hérault R, Davids K. Metastability in perception and action in rock climbing. In: Passos P, Barreiros J, Cordovil R, Araújo D, Melo F, editors. XVIIth international conference on perception and action. Estoril: FMH Editions, Portugal; 2013.

    Google Scholar 

  8. Araújo D, Davids K, Hristovski R. The ecological dynamics of decision making in sport. Psychol Sport Exerc. 2006;7(6):653–76.

    Article  Google Scholar 

  9. Gibson J. The ecological approach to visual perception. Boston: Houghton Mifflin; 1979.

    Google Scholar 

  10. Kelso JAS. Dynamic patterns: the self-organization of brain and behavior. Cambridge, MA: MIT; 1995.

    Google Scholar 

  11. Newell KM. Constraints on the development of coordination. In: Wade MG, Whiting HTA, editors. Motor development in children. Aspects of coordination and control. Dordrecht: Martinus Nijhoff; 1986. p. 341–60.

    Chapter  Google Scholar 

  12. Brunswik E. Representative design and probabilistic theory in a functional psychology. Psychol Rev. 1955;62(3):193–217.

    Article  CAS  PubMed  Google Scholar 

  13. Brunswik E. Perception and the representative design of psychological experiments. Berkeley: University of California Press; 1956.

    Google Scholar 

  14. Araújo D, Davids K, Passos P. Ecological validity, representative design, and correspondence between experimental task constraints and behavioral setting: comment on Rogers, Kadar, and Costall 2005. Ecol Psychol. 2007;19(1):69–78.

    Article  Google Scholar 

  15. Pinder RA, Davids K, Renshaw I, Araújo D. Representative learning design and functionality of research and practice in sport. J Sport Exerc Psychol. 2011;33(1):146–55.

    Article  PubMed  Google Scholar 

  16. Davids K, Araújo D. The concept of “Organismic Asymmetry” in sport science. J Sports Sci. 2010;13(6):633–40.

    Article  Google Scholar 

  17. Carroll TJ, Barry B, Riek S, Carson RG. Resistance training enhances the stability of sensorimotor coordination. Proc Biol Sci Roy Soc. 2001;268(1464):221–7.

    Article  CAS  Google Scholar 

  18. Fawcett T. Mental toughness a phenomenological perspective. In: Gucciardi D, Gordon S, editors. Mental toughness in sport: developments in theory and research. New York: Taylor & Francis Group/Routledge; 2011. p. 9–29.

    Google Scholar 

  19. Newell KM, Liu YT. Functions of learning and the acquisition of motor skills (with reference to sport). Open Sports Sci J. 2012;5:17–25.

    Article  Google Scholar 

  20. Newell KM. Change in movement and skill: learning, retention and transfer. In: Latash ML, Turvey MT, editors. Dexterity and its development. Mahwah: Erlbaum; 1996. p. 393–430.

    Google Scholar 

  21. Issurin V. Training transfer: scientific background and insights for practical application. Sports Med. 2013;43(8):675–94.

    Article  PubMed  Google Scholar 

  22. Rosalie S, Müller S. A model for the transfer of perceptual-motor skill learning in human behaviors. Res Q Exerc Sport. 2012;83(3):413–21.

    Article  PubMed  Google Scholar 

  23. Rosalie S, Müller S. Expertise facilitates the transfer of anticipation skill across domains. Q J Exp Psychol. 2014;67(2):319–34.

    Article  Google Scholar 

  24. Moore C, Müller S. Transfer of expert visual anticipation to a similar domain. Q J Exp Psychol. 2014;67(1):186–96.

    Article  Google Scholar 

  25. http://www.alainrobert.com/index.en.html.

  26. Guinness Book of World Records. 2011.

    Google Scholar 

  27. Bourdin C, Teasdale N, Nougier V, Bard C, Fleury M. Postural constraints modify the organization of grasping movements. Hum Mov Sci. 1999;18:87–102.

    Article  Google Scholar 

  28. Boschker MSJ, Bakker FC. Inexperienced sport climbers might perceive and utilize new opportunities for action by merely observing a model. Percept Mot Skills. 2002;95(1):3–9.

    Article  PubMed  Google Scholar 

  29. Seifert L, Wattebled L, L’Hermette M, Herault R. Inter-limb coordination variability in ice climbers of different skill level. Educ Phys Train Sport. 2011;1(80):63–8.

    Google Scholar 

  30. Bourdin C, Teasdale N, Nougier V. High postural constraints affect the organization of reaching and grasping movements. Experimental brain research. Experimentelle hirnforschung. Expérimentation Cérébrale. 1998;122(3):253–9.

    Article  CAS  PubMed  Google Scholar 

  31. Testa M, Martin L, Debû B. Effects of the type of holds and movement amplitude on postural control associated with a climbing task. Gait Posture. 1999;9(1):57–64.

    Article  CAS  PubMed  Google Scholar 

  32. Testa M, Martin L, Debû B. 3D analysis of posturo-kinetic coordination associated with a climbing task in children and teenagers. Neurosci Lett. 2003;336(1):45–9.

    Article  CAS  PubMed  Google Scholar 

  33. Seifert L, Wattebled L, Herault R, Poizat G, Adé D, Gal-Petitfaux N, Davids K. Neurobiological degeneracy and affordance perception support functional intra-individual variability of inter-limb coordination during ice climbing. PLoS One. 2014;9(2):e89865.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Seifert L, Wattebled L, L’Hermette M, Bideault G, Herault R, Davids K. Skill transfer, affordances and dexterity in different climbing environments. Hum Mov Sci. 2013;32(6):1339–52.

    Article  CAS  PubMed  Google Scholar 

  35. Cordier P, Mendès-France M, Bolon P, Pailhous J. Entropy, degrees of freedom, and free climbing: a thermodynamic study of a complex behavior based on trajectory analysis. Int J Sport Psychol. 1993;24:370–8.

    Google Scholar 

  36. Cordier P, Mendès-France M, Pailhous J, Bolon P. Entropy as a global variable of the learning process. Hum Mov Sci. 1994;13:745–63.

    Article  Google Scholar 

  37. Sanchez X, Lambert P, Jones G, Llewellyn DJ. Efficacy of pre-ascent climbing route visual inspection in indoor sport climbing. Scand J Med Sci Sports. 2012;22(1):67–72.

    Article  CAS  PubMed  Google Scholar 

  38. Nougier V, Orliaguet JP, Martin O. Kinematic modifications of the manual reaching in climbing: effects of environmental and corporal constraints. Int J Sport Psychol. 1993;24:379–90.

    Google Scholar 

  39. Pijpers JR, Oudejans RD, Bakker F, Beek PJ. The role of anxiety in perceiving and realizing affordances. Ecol Psychol. 2006;18(3):131–61.

    Article  Google Scholar 

  40. Batoux P, Seifert L. Ice climbing and dry-tooling: from Mont Blanc to Leman. Chamonix: JM Editions; 2007.

    Google Scholar 

  41. Blanc-Gras J, Ibarra M. The art of ice climbing. Chamonix: Blue Ice Edition; 2012.

    Google Scholar 

  42. Chow JY, Davids K, Hristovski R, Araújo D, Passos P. Nonlinear pedagogy: learning design for self-organizing neurobiological systems. New Ideas Psychol. 2011;29(2):189–200.

    Article  Google Scholar 

  43. Warren WH. The dynamics of perception and action. Psychol Rev. 2006;113(2):358–89.

    Article  PubMed  Google Scholar 

  44. Passos P, Araújo D, Davids K, Gouveia L, Milho J, Serpa S. Information-governing dynamics of attacker–defender interactions in youth rugby union. J Sports Sci. 2008;26(13):1421–9.

    Article  PubMed  Google Scholar 

  45. Newell KM, Corcos DM. Variability and motor control. Human kinetics: Champain; 1993.

    Google Scholar 

  46. Newell KM, Deutsch KM, Sosnoff JJ, Mayer-Kress G. Variability in motor output as noise: a default and erroneous proposition? In: Davids K, Bennet SJ, Newell KM, editors. Movement system variability. Champaign: Human Kinetics; 2006. p. 3–23.

    Google Scholar 

  47. Slifkin AB, Newell KM. Is variability in human performance a reflection of system noise? Curr Dir Psychol Sci. 1998;7(6):170–7.

    Article  Google Scholar 

  48. Davids K, Glazier PS, Araújo D, Bartlett RM. Movement systems as dynamical systems: the functional role of variability and its implications for sports medicine. Sports Med. 2003;33(4):245–60.

    Article  PubMed  Google Scholar 

  49. Van Emmerik REA, Van Wegen EEH. On variability and stability in human movement. J Appl Biomech. 2000;16:394–406.

    Article  Google Scholar 

  50. Seifert L, Button C, Davids K. Key properties of expert movement systems in sport : an ecological dynamics perspective. Sports Med. 2013;43(3):167–78.

    Article  PubMed  Google Scholar 

  51. Sparrow WA, Newell KM. Metabolic energy expenditure and the regulation of movement economy. Psychon Bull Rev. 1998;5(2):173–96.

    Article  Google Scholar 

  52. Edelman GM, Gally J. Degeneracy and complexity in biological systems. Proc Natl Acad Sci U S A. 2001;98(24):13763–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mason PH. Degeneracy at multiple levels of complexity. Biol Theory. 2010;5(3):277–88.

    Article  Google Scholar 

  54. Davids K, Glazier PS. Deconstructing neurobiological coordination: the role of the biomechanics-motor control nexus. Exerc Sport Sci Rev. 2010;38(2):86–90.

    Article  PubMed  Google Scholar 

  55. Withagen R, Chemero A. Affordances and classification: on the significance of a sidebar in James Gibson’s last book. Philos Psychol. 2012;25(4):521–37.

    Article  Google Scholar 

  56. Withagen R, De Poel HJ, Araújo D, Pepping GJ. Affordances can invite behavior: reconsidering the relationship between affordances and agency. New Ideas Psychol. 2012;30(2):250–8.

    Article  Google Scholar 

  57. Boschker MSJ, Bakker F, Michaels CF. Memory for the functional characteristics of climbing walls: perceiving affordances. J Mot Behav. 2002;34(1):25–36.

    Article  PubMed  Google Scholar 

  58. Fajen BR, Riley MR, Turvey MT. Information, affordances, and the control of action in sport. Int J Sports Psychol. 2009;40(1):79–107.

    Google Scholar 

  59. Jacobs DM, Michaels CF. Direct learning. Ecol Psychol. 2007;19(4):321–49.

    Article  Google Scholar 

  60. Sibella F, Frosio I, Schena F, Borghese NA. 3D analysis of the body center of mass in rock climbing. Hum Mov Sci. 2007;26(6):841–52.

    Article  CAS  PubMed  Google Scholar 

  61. Seifert L, Orth D, Hérault R, Davids K. Affordances and grasping patterns variability during rock climbing. In: Davis T, Passos P, Dicks M, Weast-Knapp J, editors. Studies in perception and action XII: seventeenth international conference on perception and action. Estoril: Psychology Press/Taylor & Francis; 2013. p. 114–8.

    Google Scholar 

  62. Johnson HW. Skill = speed x accuracy x form x adaptability. Percept Mot Skills. 1961;13:163–70.

    Article  Google Scholar 

  63. Steck U. Speed. Chamonix: Guérin edition; 2014.

    Google Scholar 

  64. Fryer S, Dickson T, Draper N, Eltom M, Stoner L, Blackwell G. The effect of technique and ability on the VO2–heart rate relationship in rock climbing. Sports Technol. 2012;5(3–4):143–50.

    Article  Google Scholar 

  65. Pezzulo G, Barca L, Lamberti Bocconi A, Borghi A. When affordances climb into your mind: advantages of motor simulation in a memory task performed by novice and expert rock climbers. Brain Cogn. 2010;73:68–73.

    Article  PubMed  Google Scholar 

  66. Collins L, Collins D. Conceptualizing the adventure-sports coach. J Adventure Educ Outdoor Learn. 2012;12(1):81–93.

    Article  Google Scholar 

  67. Fryer S. Physiological and psychological contributions to on-sight rock climbing, and the haemodynamic responses to sustained and intermittent contractions. Christchurch: University of Canterbury; 2013.

    Google Scholar 

  68. Fuss F, Niegl G. Instrumented climbing holds and performance analysis in sport climbing. Sports Technol. 2008;1(6):301–13.

    Article  Google Scholar 

  69. Sanchez X, Boschker MSJ, Llewellyn DJ. Pre-performance psychological states and performance in an elite climbing competition. Scand J Med Sci Sports. 2010;20(2):356–63.

    Article  CAS  PubMed  Google Scholar 

  70. Hardy L, Hutchinson A. Effects of performance anxiety on effort and performance in rock climbing: a test of processing efficiency theory. Anxiety Stress Coping. 2007;20(2):147–61.

    Article  PubMed  Google Scholar 

  71. Seifert L, Coeurjolly J, Hérault R, Wattebled L, Davids K. Temporal dynamics of inter limb coordination in ice climbing revealed through change-point analysis of the geodesic mean of circular data. J Appl Stat. 2013;40(11):2317–31.

    Article  Google Scholar 

  72. Brymer E, Hughes T, Collins L. The art of freestyle. Bangor: Pesda Press; 2000.

    Google Scholar 

  73. Brymer E, Oades L. Extreme sports: a positive transformation in courage and humility. J Humanist Psychol. 2009;49(1):114–26.

    Article  Google Scholar 

  74. Brymer E. Risk and extreme sports: a phenomenological perspective. Ann Leis Res. 2010;13(1,2):218–39.

    Article  Google Scholar 

  75. Brymer E, Davids K. Ecological dynamics as a theoretical framework for development of sustainable behaviours towards the environment. Environ Educ Res. 2013;19(1):45–63.

    Article  Google Scholar 

  76. Brymer E, Renshaw I. An introduction to the constraints-led approach to learning in outdoor education. Aust J Outdoor Educ. 2010;14(2):33–41.

    Google Scholar 

  77. http://www.outsideonline.com/outdoor-adventure/climbing/rock-climbing/No-StringsAttached.html. Accessed on Dec 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludovic Seifert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Seifert, L., Orth, D., Button, C., Brymer, E., Davids, K. (2017). An Ecological Dynamics Framework for the Acquisition of Perceptual–Motor Skills in Climbing. In: Feletti, F. (eds) Extreme Sports Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-28265-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28265-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28263-3

  • Online ISBN: 978-3-319-28265-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics