Skip to main content

RF Energy Harvesting Communications: Recent Advances and Research Issues

  • Chapter

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 50))

Abstract

Green radio communications has got a lot of attention in recent years due to its telling effects on telecom business and environment. On the other side, energy harvesting (EH) communication has emerged as a potential candidate to reduce the communication cost by tackling the problem in a contrasting fashion. While green communication techniques focus on minimization the use of radio resources, EH communication relies on environment friendly techniques to generate energy (from the renewable resources) and effective use of created energy conditioned on the fact that there is always energy available when required. Thus, the focus migrates from minimization of energy to optimal time domain distribution of energy and this causes a paradigm shift in radio resource allocation research. Instead of just focusing on average and maximum power constraint, the packet/energy arrival processes and packet/energy buffering interact in a challenging way to open new research opportunities. This chapter summarizes the major research work in the area of radio frequency (RF) energy harvesting resource allocation. First, we discuss the fundamental concepts related to energy harvesting communications. Then, we review the recent developments in this area and outline the major research challenges for the research community. We address the cooperation aspect of energy harvesting, which has emerged as an interesting area of research. Wireless powered communication networks allow energy and information transfer from the radio frequency waves and provide sustainable networks. Finally, we discuss a wireless powered relay network in detail and show the performance comparison of different relay selection techniques.

An erratum of this chapter can be found under DOI 10.1007/978-3-319-27568-0_19

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahmed, I., Butt, M.M., Psomas, C., Mohamed, A., Krikidis, I., Guizani, M.: Survey on energy harvesting wireless communications: Challenges and opportunities for radio resource allocation. Elsevier Comput. Netw. (2015). doi:10.1016/j.comnet.2015.06.009

    Google Scholar 

  2. Ahmed, I., Ikhlef, A., Ng, D., Schober, R.: Power allocation for an energy harvesting transmitter with hybrid energy sources. IEEE Trans. Wirel. Commun. 12(12), 6255–6267 (2013). doi:10.1109/TWC.2013.111013.130215

    Article  Google Scholar 

  3. Antepli, M., Uysal-Biyikoglu, E., Erkal, H.: Optimal packet scheduling on an energy harvesting broadcast link. IEEE J. Sel. Areas Commun. 29(8), 1721–1731 (2011). doi:10.1109/JSAC.2011.110920

    Article  Google Scholar 

  4. Butt, M.M., Nasir, A., Mohamed, A., Guizani, M.: Trading wireless information and energy transfer: relay selection schemes to minimize the outage probability. In: IEEE Global Conference on Signal and Information Processing (GlobalSIP). Atlanta, Georgia (2015)

    Google Scholar 

  5. Ding, Z., Perlaza, S.M., Esnaola, I., Poor, H.V.: Power allocation strategies in energy harvesting wireless cooperative networks. IEEE Trans. Wirel. Commun. 13(2), 846–860 (2014). doi:10.1109/TWC.2013.010213.130484

    Article  Google Scholar 

  6. Ding, Z., Poor, H.: Cooperative energy harvesting networks with spatially random users. IEEE Signal Process. Lett. 20(12), 1211–1214 (2013). doi:10.1109/LSP.2013.2284800

    Article  Google Scholar 

  7. Fehske, A., Fettweis, G., Malmodin, J., Biczók, G.: The global footprint of mobile communications: The ecological and economic perspective. IEEE Commun. Mag. 49(8), 55–62 (2011)

    Article  Google Scholar 

  8. Feng, R., Li, Q., Zhang, Q., Qin, J.: Robust secure transmission in MISO simultaneous wireless information and power transfer system. IEEE Trans. Veh. Technol. PP(99), 1-1 (2014). doi:10.1109/TVT.2014.2322076

    Google Scholar 

  9. Group, C.I.R.: Renewable energy sources and climate change mitigation. http://srren.ipcc-wg3.de/ipcc-srren-generic-presentation-1 (2012)

  10. Gurakan, B., Ozel, O., Yang, J., Ulukus, S.: Two-way and multiple-access energy harvesting systems with energy cooperation. In: Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR). Pacific Grove, CA (2012). doi:10.1109/ACSSC.2012.6488958

  11. Gurakan, B., Ozel, O., Yang, J., Ulukus, S.: Energy cooperation in energy harvesting communications. IEEE Trans. Commun. 61(12), 4884–4898 (2013). doi:10.1109/TCOMM.2013.110113.130184

    Article  Google Scholar 

  12. Gurakan, B., Ozel, O., Yang, J., Ulukus, S.: Energy cooperation in energy harvesting two-way communications. In: IEEE International Conference on Communications (ICC). Budapest (2013)

    Google Scholar 

  13. Ho, C.K., Zhang, R.: Optimal energy allocation for wireless communications with energy harvesting constraints. IEEE Trans. Signal Process. 60(9), 4808–4818 (2012)

    Article  MathSciNet  Google Scholar 

  14. Hossain, E., Bhargava, V.K., Fettweis, G.P.: Green Radio Commun. Netw., 1st edn. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  15. Huang, K., Lau, V.: Enabling wireless power transfer in cellular networks: Architecture, modeling and deployment. IEEE Trans. Wirel. Commun. 13(2), 902–912 (2014). doi:10.1109/TWC.2013.122313.130727

    Article  Google Scholar 

  16. Ikhlef, A., Kim, J., Schober, R.: Mimicking full-duplex relaying using half-duplex relays with buffers. IEEE Trans. Veh. Technol. 61(7), 3025–3037 (2012)

    Article  Google Scholar 

  17. Ishibashi, K., Ochiai, H., Tarokh, V.: Energy harvesting cooperative communications. In: IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC). Sydney, Australia (2012). doi:10.1109/PIMRC.2012.6362646

  18. Ju, H., Zhang, R.: A novel mode switching scheme utilizing random beamforming for opportunistic energy harvesting. IEEE Trans. Wirel. Commun. 13(4), 2150–2162 (2014). doi:10.1109/TWC.2014.030314.131101

    Article  Google Scholar 

  19. Ju, H., Zhang, R.: Throughput maximization in wireless powered communication networks. IEEE Trans. Wirel. Commun. 13(1), 418–428 (2014). doi:10.1109/TWC.2013.112513.130760

    Article  MathSciNet  Google Scholar 

  20. Kansal, A., Hsu, J., Zahedi, S., Srivastava, M.B.: Power management in energy harvesting sensor networks. ACM Trans. Embed. Comput. Syst. 6(4) (2007)

    Google Scholar 

  21. Krikidis, I.: Simultaneous information and energy transfer in large-scale networks with/without relaying. IEEE Trans. Commun. 62(3), 900–912 (2014). doi:10.1109/TCOMM.2014.020914.130825

    Article  Google Scholar 

  22. Krikidis, I., Timotheou, S., Sasaki, S.: RF energy transfer for cooperative networks: data relaying or energy harvesting? IEEE Commun. Lett. 16(11), 1772–1775 (2012). doi:10.1109/LCOMM.2012.091712.121395

    Article  Google Scholar 

  23. Lee, S., Liu, L., Zhang, R.: Collaborative wireless energy and information transfer in interference channel. IEEE Trans. Wirel. Commun. 14(1), 545–557 (2015). doi:10.1109/TWC.2014.2354335

    Article  Google Scholar 

  24. Lei, J., Yates, R., Greenstein, L.: A generic model for optimizing single-hop transmission policy of replenishable sensors. IEEE Trans. Wirel. Commun. 8(2), 547–551 (2009). doi:10.1109/TWC.2009.070905

    Article  Google Scholar 

  25. Liu, L., Zhang, R., Chua, K.: Multi-antenna wireless powered communication with energy beamforming. IEEE Trans. Commun. 62(12), 4349–4361 (2014). doi:10.1109/TCOMM.2014.2370035

    Article  MathSciNet  Google Scholar 

  26. Liu, L., Zhang, R., Chua, K.C.: Wireless information and power transfer: a dynamic power splitting approach. IEEE Trans. Commun. 61(9), 3990–4001 (2013). doi:10.1109/TCOMM.2013.071813.130105

    Article  Google Scholar 

  27. Liu, L., Zhang, R., Chua, K.C.: Wireless information transfer with opportunistic energy harvesting. IEEE Trans. Wirel. Commun. 12(1), 288–300 (2013). doi:10.1109/TWC.2012.113012.120500

    Article  Google Scholar 

  28. Liu, L., Zhang, R., Chua, K.C.: Secrecy wireless information and power transfer with MISO beamforming. IEEE Trans. Signal Process. 62(7), 1850–1863 (2014). doi:10.1109/TSP.2014.2303422

    Article  MathSciNet  Google Scholar 

  29. Luo, Y., Zhang, J., Letaief, K.B.: Relay selection for energy harvesting cooperative communication systems. In: IEEE Global communications conference (Globecom). Atlanta, GA, USA (2013)

    Google Scholar 

  30. Mancuso, V., Alouf, S.: Reducing costs and pollution in cellular networks. IEEE Commun. Mag. 49(8), 63–71 (2011)

    Article  Google Scholar 

  31. Medepally, B., Mehta, N., Murthy, C.: Implications of energy profile and storage on energy harvesting sensor link performance. In: IEEE Global Telecommunications Conference (GLOBECOM). Honolulu, HI (2009). doi:10.1109/GLOCOM.2009.5425655

  32. Michalopoulos, D.S., Suraweera, H.A., Schober, R.: Relay selection for simultaneous information transmission and wireless energy transfer: a tradeoff perspective. In IEEE journal on Selected Areas in Communications. 33(8), 1578–1594 (2015)

    Google Scholar 

  33. Michelusi, N., Stamatiou, K., Zorzi, M.: Transmission policies for energy harvesting sensors with time-correlated energy supply. IEEE Trans. Commun. 61(7), 2988–3001 (2013). doi:10.1109/TCOMM.2013.052013.120565

    Article  Google Scholar 

  34. Nasir, A.A., Zhou, X., Durrani, S., Kennedy, R.A.: Relaying protocols for wireless energy harvesting and information processing. IEEE Trans. Wirel. Commun. 12, 3622–3636 (2013)

    Article  Google Scholar 

  35. Ng, D., Lo, E., Schober, R.: Energy-efficient power allocation in ofdm systems with wireless information and power transfer. In: IEEE International Conference on Communications (ICC). Budapest (2013). doi:10.1109/ICC.2013.6655208

  36. Ng, D., Lo, E., Schober, R.: Energy-efficient resource allocation in multiuser ofdm systems with wireless information and power transfer. In: IEEE Wireless Communications and Networking Conference (WCNC). Shanghai (2013). doi:10.1109/WCNC.2013.6555184

  37. Ng, D., Lo, E., Schober, R.: Wireless information and power transfer: energy efficiency optimization in ofdma systems. IEEE Trans. Wirel. Commun. 12(12), 6352–6370 (2013). doi:10.1109/TWC.2013.103113.130470

    Article  Google Scholar 

  38. Ng, D., Lo, E., Schober, R.: Robust beamforming for secure communication in systems with wireless information and power transfer. IEEE Trans. Wirel. Commun. PP(99), 1-1 (2014). doi:10.1109/TWC.2014.2314654

    Google Scholar 

  39. Ng, D., Xiang, L., Schober, R.: Multi-objective beamforming for secure communication in systems with wireless information and power transfer. In: IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC). London, UK (2013).doi:10.1109/PIMRC.2013.6666095

  40. Niyato, D., Wang, P.: Delay-limited communications of mobile node with wireless energy harvesting: performance analysis and optimization. IEEE Trans. Veh. Technol. 63(4), 1870–1885 (2014). doi:10.1109/TVT.2013.2285922

    Article  Google Scholar 

  41. Sharma, V., Mukherji, U., Joseph, V., Gupta, S.: Optimal energy management policies for energy harvesting sensor nodes. IEEE Trans. Wirel. Commun. 9(4), 1326–1336 (2010). doi:10.1109/TWC.2010.04.080749

    Article  Google Scholar 

  42. The Climate Group: SMART2020: Enabling the low carbon economy in the information age. http://www.smart2020.org/_assets/files/02_Smart2020Report.pdf (2008)

  43. Tutuncuoglu, K., Yener, A.: Cooperative energy harvesting communications with relaying and energy sharing. In: IEEE Information Theory Workshop (ITW). Sevilla, Spain (2013). doi:10.1109/ITW.2013.6691280

  44. Xu, J., Liu, L., Zhang, R.: Multiuser MISO beamforming for simultaneous wireless information and power transfer. IEEE Trans. Signal Process. 62(18), 4798–4810 (2014). doi:10.1109/TSP.2014.2340817

    Article  MathSciNet  Google Scholar 

  45. Yang, G., Lin, G.Y., Wei, H.Y.: Markov chain performance model for IEEE 802.11 devices with energy harvesting source. In: IEEE Global Communications Conference (GLOBECOM). Anaheim, CA (2012). doi:10.1109/GLOCOM.2012.6503948

  46. Yuan, F., Zhang, Q., Jin, S., Zhu, H.: Optimal harvest-use-store strategy for energy harvesting wireless systems. IEEE Trans. Wirel. Commun. 14(2), 698–710 (2015). doi:10.1109/TWC.2014.2358215

    Article  Google Scholar 

  47. Zhang, R., Ho, C.K.: MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Trans. Wirel. Commun. 12(5), 1989–2001 (2013). doi:10.1109/TWC.2013.031813.120224

    Article  Google Scholar 

  48. Zhou, X., Zhang, R., Ho, C.K.: Wireless information and power transfer: architecture design and rate-energy tradeoff. IEEE trans. Commun. 61(11), 4754–4767 (2013). doi:10.1109/TCOMM.2013.13.120855

    Article  Google Scholar 

  49. Zhou, X., Zhang, R., Ho, C.K.: Wireless information and power transfer in multiuser OFDM systems. IEEE Trans. Wirel. Commun. 13(4), 2282–2294 (2014). doi:10.1109/TWC.2014.030514.131479

    Article  Google Scholar 

Download references

Acknowledgments

This publication was made possible by NPRP 5-782-2-322 and NPRP 4-1034-2-385 from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Majid Butt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Butt, M.M., Krikidis, I., Mohamed, A., Guizani, M. (2016). RF Energy Harvesting Communications: Recent Advances and Research Issues. In: Shakir, M.Z., Imran, M.A., A. Qaraqe, K., Alouini, MS., V. Vasilakos, A. (eds) Energy Management in Wireless Cellular and Ad-hoc Networks. Studies in Systems, Decision and Control, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-319-27568-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27568-0_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27566-6

  • Online ISBN: 978-3-319-27568-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics