Skip to main content

Impact of Accuracy Optimization on the Convergence of Numerical Iterative Methods

  • Conference paper
  • First Online:
Logic-Based Program Synthesis and Transformation (LOPSTR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9527))

Abstract

Among other objectives, rewriting programs serves as a useful technique to improve numerical accuracy. However, this optimization is not intuitive and this is why we switch to automatic transformation techniques. We are interested in the optimization of numerical programs relying on the IEEE754 floating-point arithmetic. In this article, our main contribution is to study the impact of optimizing the numerical accuracy of programs on the time required by numerical iterative methods to converge. To emphasize the usefulness of our tool, we make it optimize several examples of numerical methods such as Jacobi’s method, Newton-Raphson’s method, etc. We show that significant speedups are obtained in terms of number of iterations, time and flops.

This work was supported by the ANR Project ANR-12-INSE-0007 “CAFEIN”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdelmalek, N.: Roundoff error analysis for gram-schmidt method and solution of linear least squares problem. BIT 11, 345–368 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  2. ANSI/IEEE. IEEE Standard for Binary Floating-point Arithmetic, std 754–2008 (second edn) (2008)

    Google Scholar 

  3. Benz, F., Hildebrandt, A., Hack, S.: A dynamic program analysis to find floating-point accuracy problems. In: PLDI 2012, pp. 453–462. ACM (2012)

    Google Scholar 

  4. Consel, C., Danvy, O.: Partial evaluation of pattern matching in strings. Inf. Proc. Lett. 30(2), 79–86 (1989)

    Article  Google Scholar 

  5. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction of approximations of fixed points. In: POPL 1977, pp. 238–252. ACM (1977)

    Google Scholar 

  6. Cousot, P., Cousot, R.: Systematic design of program transformation frameworks by abstract interpretation. In: POPL 2002, pp. 178–190. ACM (2002)

    Google Scholar 

  7. Cytron, R., Gershbein, R.: Efficient accomodation of may-alias information in SSA form. In: PLDI 1993, pp. 36–45. ACM (1993)

    Google Scholar 

  8. Damouche, N., Martel, M., Chapoutot, A.: Intra-procedural optimization of the numerical accuracy of programs. In: Núñez, M., Güdemann, M. (eds.) Formal Methods for Industrial Critical Systems. LNCS, vol. 9128, pp. 31–46. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  9. Damouche, N., Martel, M., Chapoutot, A.: Optimizing the accuracy of a rocket trajectory simulation by program transformation. In: Computing Frontiers, pp. 40:1–40:2. ACM (2015)

    Google Scholar 

  10. Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  11. Goubault, E., Putot, S.: Static analysis of finite precision computations. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 232–247. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Hankin, E.: Lambda Calculi A Guide For Computer Scientists. Clarendon Press, Oxford (1994)

    MATH  Google Scholar 

  13. Hernandez, V., Roman, J.E., Tomas, A., Vidal, V.: Orthogonalization routine in SLEPc Technical Report STR-1. In: Polytechnic University of Valencia. STR1 (2007)

    Google Scholar 

  14. Hunt, S., Sands, D.: Binding time analysis: a new perspective. In: PEPM 1991, pp. 154–165 (1991)

    Google Scholar 

  15. Ioualalen, A., Martel, M.: A new abstract domain for the representation of mathematically equivalent expressions. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 75–93. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program Generation. Prentice Hall International, Englewood Cliffs (1993). ISBN 0-13-020249-5

    MATH  Google Scholar 

  17. Kendall, A.: An Introduction to Numerical Analysis. John Wiley & Sons, New York (1989)

    MATH  Google Scholar 

  18. Langlois, Ph., Louvet, N.: How to ensure a faithful polynomial evaluation with the compensated horner algorithm. In: ARITH-18, pp. 141–149. IEEE Computer Society (2007)

    Google Scholar 

  19. Martel, M.: Semantics of roundoff error propagation in finite precision calculations. Higher-Order Symbolic Comput. 19(1), 7–30 (2006)

    Article  MATH  Google Scholar 

  20. Martel, M.: Accurate evaluation of arithmetic expressions (invited talk). Electr. Notes Theor. Comput. Sci. 287, 3–16 (2012)

    Article  MATH  Google Scholar 

  21. Mouilleron, C.: Efficient computation with structured matrices and arithmetic expressions. Ph.D. thesis, Université de Lyon-ENS de Lyon, November 2011

    Google Scholar 

  22. Muller, G., Volanschi, E.-N., Marlet, R.: Scaling up partial evaluation for optimizing the sun commercial RPC protocol. In: PEPM 1997, pp. 116–126. ACM (1997)

    Google Scholar 

  23. Muller, J.-M., Brisebarre, N., de Dinechin, F., Jeannerod, C.-P., Lefèvre, V., Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arithmetic, Birkhäuser Boston (2010)

    Google Scholar 

  24. Tate, R., Stepp, M., Tatlock, Z., Lerner, S.: Equality saturation: a new approach to optimization. In: POPL 2009, pp. 264–276. ACM (2009)

    Google Scholar 

  25. Tate, R., Stepp, M., Tatlock, Z., Lerner, S.: Equality saturation: a new approach to optimization. Log. Meth. Comput. Sci. 7(1), 1–37 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasrine Damouche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Damouche, N., Martel, M., Chapoutot, A. (2015). Impact of Accuracy Optimization on the Convergence of Numerical Iterative Methods. In: Falaschi, M. (eds) Logic-Based Program Synthesis and Transformation. LOPSTR 2015. Lecture Notes in Computer Science(), vol 9527. Springer, Cham. https://doi.org/10.1007/978-3-319-27436-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27436-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27435-5

  • Online ISBN: 978-3-319-27436-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics