Skip to main content

Ant-Based System Analysis on the Traveling Salesman Problem Under Real-World Settings

  • Conference paper
  • First Online:
Combinations of Intelligent Methods and Applications

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 46))

Abstract

Many optimization problems have huge solution spaces, deep restrictions, highly correlated parameters, and operate with uncertain or inconsistent data. Such problems sometimes elude the usual solving methods we are familiar with, forcing us to continuously improve these methods or to even completely reconsider the solving methodologies. When decision makers need faster and better results to more difficult problems, the quality of a decision support system is crucial. To estimate the quality of a decision support system when approaching difficult problems is not easy, but is very important when designing and conducting vital industrial processes or logistic operations. This paper studies the resilience of a solving method, initially designed for the static and deterministic TSP (Traveling Salesman Problem) variant, when applied to an uncertain and dynamic TSP version. This investigation shows how a supplementary level of complexity can be successfully handled. The traditional ant-based system under investigation is infused with a technique which allows the evaluation of its performances when uncertain input data are present. Like the real ant colonies do, the system rapidly adapts to repeated environmental changes. A comparison with the performance of another heuristic optimization method is also done.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dantzig, G.: Linear programming under uncertainty. Manage. Sci. 1(3–4), 197–206 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  2. Charnes, A., Cooper, W.: Chance-constrained programming. Manage. Sci. 6(1), 73–79 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  4. Soyster, A.: Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper. Res. 21, 1154–1157 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gould, F.J.: Proximate linear programming: an experimental study of a modified simplex algorithm for solving programs with inexact data, University of North Carolina at Chapel Hill, Institute of Statistics Mimeo Series No. 789 (1971)

    Google Scholar 

  6. Ben-Tal, A., Nemirovski, A.: Robust solutions of linear programming problems contaminated with uncertain data. Math. Program. 88, 411–424 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23, 769–805 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. El-Ghaoui, L., Lebret, H.: Robust solutions to least-square problems to uncertain data matrices. SIAM J. Matrix Anal. Appl. 18, 1035–1064 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Crişan, G.C., Pintea, C.M., Chira, C.: Risk assessment for incoherent data. Environ. Eng. Manag. J. 11(12), 2169–2174 (2012)

    Google Scholar 

  10. Crainic, T.G., Crişan, G.C., Gendreau, M., Lahrichi, N., Rei, W.: A concurrent evolutionary approach for rich combinatorial optimization. In: Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers 2017–2022 (2009)

    Google Scholar 

  11. Tlili, T., Krichen, S., Faiz, S.: Simulated annealing-based decision support system for routing problems. In: 2014 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 2954–2958 (2014)

    Google Scholar 

  12. ADOPT: Advanced Decision-support System for Ship Design, Operation and Training. http://ec.europa.eu/research/transport/projects/items/adopt_en.htm

  13. Applegate, D., Cook, W.J., Rohe, S.: Chained Lin-Kernighan for large traveling salesman problems. INFORMS J. Comput. 15(1), 82–92 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. NEOS server, http://www.neos-server.org/neos/

  15. Stützle, T.: ACOTSP, http://www.aco-metaheuristic.org/aco-code (2004)

  16. Cook, W.J.: In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation. Princeton University Press, Princeton (2012)

    Google Scholar 

  17. Dantzig, G.B., Fulkerson, R., Johnson, S.M.: Solution of a large-scale traveling salesman problem. Oper. Res. 2, 393–410 (1954)

    MathSciNet  Google Scholar 

  18. Laporte, G.: A short history of the traveling salesman problem. Canada Research Chair in Distribution Management,Centre for Research on Transportation (CRT) and GERAD HEC Montréal, Canada (2006)

    Google Scholar 

  19. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2011)

    Google Scholar 

  20. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher J.W. (eds.) Complexity of Computer Computations. The IBM Research Symposia, pp. 85–103. Plenum. Press, New York (1972)

    Google Scholar 

  21. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: On the solution of traveling salesman problems. Documenta Mathematica, Extra volume ICM 1998(III), 645–656 (1998)

    Google Scholar 

  22. Sangalli, A.: Why sales reps pose a hard problem. New Sci. 24–28 (1992)

    Google Scholar 

  23. Moscato, P., Buriol, L., Cotta, C.: On the analysis of data derived from mitochondrial DNA distance matrices: Kolmogorov and a traveling salesman give their opinion. In: Pedal, C.D. (ed.) Advances in Nature Inspired Computation: The PPSN VII Workshops, University of Reading, pp. 37–38 (2002)

    Google Scholar 

  24. Climer, S., Zhang, W.: Take a walk and cluster genes: a TSP-based approach to optimal rearrangement clustering. In: 21st International Conference on Machine Learning (ICML’04), pp. 169–176, Banff, Canada (2004)

    Google Scholar 

  25. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)

    Article  Google Scholar 

  26. Adleman L.M.: Steering the future of computing. Nature 440(7083), 383 (2006)

    Google Scholar 

  27. Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees. Oper. Res. 18, 1138–1162 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  28. Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees: part II. Math. Program. 1, 6–25 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  29. Concorde TSP solver, http://www.math.uwaterloo.ca/tsp/concorde/

  30. Google TSP solver, https://code.google.com/p/google-maps-tsp-solver/

  31. LKH TSP solver, http://www.akira.ruc.dk/~keld/research/LKH

  32. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report 388, Graduate School of Industrial Administration, Carnegie Mellon University (1976)

    Google Scholar 

  33. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21(2), 498–516 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gamboa, D., Rego, C., Glover, F.: Data structures and ejection chains for solving large scale traveling salesman problems. Eur. J. Oper. Res. 160(1), 154–171 (2005)

    Article  MATH  Google Scholar 

  35. Braschi, B.: Solving the traveling salesman problem using the simulated annealing on a hypercube. In: Proceedings of the Fourth Conference on Hypercubes, Concurrent Computers and Applications, pp. 765–768 (1989)

    Google Scholar 

  36. Dorigo, M., Gambardella, L.M.: Ant colonies for the traveling salesman problem. Technical Report TR/IRIDIA/1996-3 Université Libre de Bruxelles (1996)

    Google Scholar 

  37. Benchmark instances for the Travelling Salesman Problem with Time Windows, http://iridia.ulb.ac.be/~manuel/tsptw-instances

  38. Library of various sample TSP and TSP-related instances, https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

  39. GPS-TSP instance, http://cadredidactice.ub.ro/ceraselacrisan/cercetare/ (2015)

  40. Jaillet, P., Qi, J., Sim, M.: Routing optimization with deadlines under uncertainty. Working paper, MIT & NUS, http://www.mit.edu/~jaillet/general/publications.html (2014)

  41. Jaillet, P.: A priori solution of a traveling salesman problem in which a random set of the customers are visited. Oper. Res. 36(6), 929–936 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  42. Berman, O., Simchi-Levi, D.: Finding the optimal a priori tour and location of traveling salesman with nonhomogeneous customers. Transp. Sci. 22(2), 148–154 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  43. Laporte, G., Louveaux, F., Mercure, H.: A priori optimization of the traveling salesman problem. Oper. Res. 42(3), 543–549 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  44. Rossi, F.A., Gavioli, I.: Aspects of heuristic methods in traveling salesman problem. In: Andreatta, G., Mason, F., Serafini, P. (eds.) Advanced School on Statistics in Combinatorial Optimization, pp. 214–227. World Scientific Publication, Singapore (1987)

    Google Scholar 

  45. Bianchi, L., Knowles, J., Bowler, N.: Local search for the traveling salesman problem: correction of the 2-p-opt and 1-shift algorithms. Eur. J. Oper. Res. 162(1), 206–219 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. Bianchi, L., Gambardella, L.M., Dorigo, M.: An ant colony optimization approach to the probabilistic traveling salesman problem. In: 7th International Conference on Parallel Problem Solving from Nature I, vol. 2439, pp. 883–892 (2002)

    Google Scholar 

  47. Marinakis, Y., Marinaki, M.: A hybrid honey bees mating optimization algorithm for the probabilistic traveling salesman problem. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1762–1769 (2010)

    Google Scholar 

  48. Henchiri, A., Bellalouna, M., Khaznaji, W.: Probabilistic traveling salesman problem: a survey. In: Position papers of the 2014 Federated Conference on Computer Science and Information Systems, Annals of Computer Science and Information Systems, vol. 2, pp. 55–60 (2014)

    Google Scholar 

  49. Bianchi, L.: Ant colony optimization and local search for the probabilistic traveling salesman problem: a case study in stochastic combinatorial optimization. Ph.D. Thesis, Université Libre de Bruxelles (2006)

    Google Scholar 

  50. Montemanni, R., Barta, J., Gambardella, L.M.: The robust traveling salesman problem with interval data, Technical Report IDSIA 20–05 (2005)

    Google Scholar 

  51. Crişan, G.C., Nechita, E.: Solving fuzzy TSP with Ant algorithms. Int. J. Comput., Commun. Control III, suppl. issue, 228–231 (2008)

    Google Scholar 

  52. Toriello, A., Haskell, W.B., Poremba, M.: A dynamic traveling salesman problem with stochastic arc costs. Oper. Res. 62, 1107–1125 (2014)

    Article  MathSciNet  Google Scholar 

  53. Bellman, R.: Dynamic programming treatment of the traveling salesman problem. J. Assoc. Comput. Mach. 9, 61–63 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  54. de Farias, D.P., van Roy, B.: The linear programming approach to approximate dynamic programming. Oper. Res. 51, 850–865 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  55. Bertsimas, D.J.: A vehicle routing problem with stochastic demand. Oper. Res. 40, 574–585 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  56. Secomandi, N.: Analysis of a rollout approach to sequencing problems with stochastic routing applications. J. Heuristics 9, 321–352 (2003)

    Article  MATH  Google Scholar 

  57. Cheong, T., White, C.C.: Dynamic traveling salesman problem: value of real-time traffic information. IEEE Trans. Intell. Transp. Syst. 13, 619–630 (2012)

    Article  Google Scholar 

  58. Buhmann, J.M., Mihalák, M., Šrámek, R., Widmayer, P.: Robust optimization in the presence of uncertainty. In: Proceedings of the 4th conference on Innovations in Theoretical Computer Science (ITCS ’13), pp. 505–514. ACM, New York, USA (2013)

    Google Scholar 

  59. Jaillet, P., Lu, X.: Online traveling salesman problems with service flexibility. Networks 58, 137–146 (2011)

    MathSciNet  MATH  Google Scholar 

  60. Jaillet, P., Wagner, M.R.: Online vehicle routing problems: a survey. In: Golden, B.L., Raghavan, S., Wasil, E.A. (eds.) The Vehicle Routing Problem: Latest Advances and New Challenges. Springer (2008)

    Google Scholar 

  61. MIT Operations Research Center, Laboratory for Information and Decision Systems. https://lids.mit.edu/

  62. Schultz, T.R.: In search of Ant ancestors. Proc. Nat. Acad. Sci. 97(26), 14028–14029 (2000)

    Google Scholar 

  63. Wilson, E.O., Hölldobler, B.: Eusociality: origin and consequences. Proc. Nat. Acad. Sci. 102(38), 13367–13371 (2005)

    Article  Google Scholar 

  64. Dorigo, M., Stüzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  65. Pintea, C.M.: Advances in Bio-inspired Computing for Combinatorial Optimization Problems. Springer (2014)

    Google Scholar 

  66. Crişan, G.C., Pintea, C.M., Pop, P.: On the resilience of an ant-based system in fuzzy environments. An empirical study. In: Proceedings of the 2014 IEEE International Conference on Fuzzy Systems, Beijing, China, pp. 2588–2593 (2014)

    Google Scholar 

  67. Nechita, E.: On the Approaches of Classical AI and Embodied AI. Scientific Studies and Research, Series Mathematics and Informatics, vol. 21(1), pp. 175–178 (2011)

    Google Scholar 

  68. Nechita, E.: Simulation of Discrete Events Systems (in Romanian). Tehnopress Publishing House, Iaşi (2005)

    Google Scholar 

  69. Glover, F., Laguna M.: Tabu Search, Kluwer Academic Publishers (1997)

    Google Scholar 

  70. Kirkpatrick, S., Gelatt Jr, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  71. Černý, V.: Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J. Optim. Theory Appl. 45, 41–51 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  72. Birattari, M., Dorigo, M.: How to assess and report the performance of a stochastic algorithm on a benchmark problem: mean or best result on a number of runs? Optim. Lett. 1(3), 309–311 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  73. Crişan, G.C.: Ant algorithms in artificial intelligence. Ph.D. Thesis, A.I. Cuza University of Iaşi, Romania (2008)

    Google Scholar 

  74. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput. 9(1), 3–12 (2005)

    Article  Google Scholar 

  75. Hertz, A., Widmer, M.: Guidelines for the use of meta-heuristics in combinatorial optimization. Eur. J. Oper. Res. 151, 247–252 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  76. Matthews, D.C., Sutton, A.M., Hains, D., Whitley, L.D.: Improved Robustness through Population Variance in Ant Colony Optimization, Engineering Stochastic Local Search Algorithms. Designing, Implementing and Analyzing Effective Heuristics, Lecture Notes in Computer Science, vol. 5752, pp. 145–149 (2009)

    Google Scholar 

Download references

Acknowledgments

G.C.C. and E.N. acknowledge the support of the project “Bacau and Lugano—Teaching Informatics for a Sustainable Society”, co-financed by Switzerland through the Swiss-Romanian Cooperation Programme to reduce economic and social disparities within the enlarged European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria Cerasela Crişan .

Editor information

Editors and Affiliations

Annex: Experimental Results

Annex: Experimental Results

Table 5 presents the detailed results of our experiments.

Table 5 Detailed experimental results for ACOTSP

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Crişan, G.C., Nechita, E., Palade, V. (2016). Ant-Based System Analysis on the Traveling Salesman Problem Under Real-World Settings. In: Hatzilygeroudis, I., Palade, V., Prentzas, J. (eds) Combinations of Intelligent Methods and Applications. Smart Innovation, Systems and Technologies, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-26860-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26860-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26858-3

  • Online ISBN: 978-3-319-26860-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics